AoPS Community

2013 Regional Competition For Advanced Students

Regional Competition For Advanced Students 2013

www.artofproblemsolving.com/community/c1077524
by parmenides51

1 For which integers between 2000 and 2010 (including) is the probability that a random divisor is smaller or equal 45 the largest?

2 Determine all integers x satisfying

$$
\left[\frac{x}{2}\right]\left[\frac{x}{3}\right]\left[\frac{x}{4}\right]=x^{2} .
$$

($[y]$ is the largest integer which is not larger than y.)
3 For non-negative real numbers a, b let $A(a, b)$ be their arithmetic mean and $G(a, b)$ their geometric mean. We consider the sequence $\left\langle a_{n}\right\rangle$ with $a_{0}=0, a_{1}=1$ and $a_{n+1}=A\left(A\left(a_{n-1}, a_{n}\right), G\left(a_{n-1}, a_{n}\right)\right)$ for $n>0$.
(a) Show that each $a_{n}=b_{n}^{2}$ is the square of a rational number (with $b_{n} \geq 0$).
(b) Show that the inequality $\left|b_{n}-\frac{2}{3}\right|<\frac{1}{2^{n}}$ holds for all $n>0$.

4 We call a pentagon distinguished if either all side lengths or all angles are equal. We call it very distinguished if in addition two of the other parts are equal. i.e. 5 sides and 2 angles or 2 sides and 5 angles. Show that every very distinguished pentagon has an axis of symmetry.

