Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Junior Match 2017

www.artofproblemsolving.com/community/c1078074
by parmenides51

- Individual

1 Find the largest integer $n \geq 3$ for which there is a n-digit number $\overline{a_{1} a_{2} a_{3} \ldots a_{n}}$ with non-zero digits a_{1}, a_{2} and a_{n}, which is divisible by $\overline{a_{2} a_{3} \ldots a_{n}}$.

2 Given is the triangle $A B C$, with $|A B|+|A C|=3 \cdot|B C|$. Let's denote D, E also points that $B C D A$ and $C B E A$ are parallelograms. On the sides $A C$ and $A B$ sides, F and G are selected respectively so that $|A F|=|A G|=|B C|$. Prove that the lines $D F$ and $E G$ intersect at the line segment $B C$

3 Prove that for all real numbers x, y holds $\left(x^{2}+1\right)\left(y^{2}+1\right) \geq 2(x y-1)(x+y)$. For which integers x, y does equality occur?

4 Given is a right triangle $A B C$ with perimeter 2 , with $\angle B=90^{\circ}$. Point S is the center of the excircle to the side $A B$ of the triangle and H is the intersection of the heights of the triangle $A B S$. Determine the smallest possible length of the segment $H S$.

5 Each field of the table $(m n+1) \times(m n+1)$ contains a real number from the interval $[0,1]$. The sum the numbers in each square section of the table with dimensions $n x n$ is equal to n. Determine how big it can be sum of all numbers in the table.

- Team

1 Decide if there are primes p, q, r such that $\left(p^{2}+p\right)\left(q^{2}+q\right)\left(r^{2}+r\right)$ is a square of an integer.
2 Decide if exists a convex hexagon with all sides longer than 1 and all nine of its diagonals are less than 2 in length.

3 How many 8-digit numbers are $* 2 * 0 * 1 * 7$, where four unknown numbers are replaced by stars, which are divisible by 7 ?

4 Bolek draw a trapezoid $A B C D$ trapezoid $(A B / / C D)$ on the board, with its midsegment line $E F$ in it. Point intersection of his diagonal $A C, B D$ denote by P, and his rectangular projection on line $A B$ denote by Q. Lolek, wanting to tease Bolek, blotted from the board everything except segments $E F$ and $P Q$. When Bolek saw it, wanted to complete the drawing and draw the original trapezoid, but did not know how to do it. Can you help Bolek?

5 In each square of the 100×100 square table, type 1,2 , or 3 . Consider all subtables $m \times n$, where $m=2$ and $n=2$. A subtable will be called balanced if it has in its corner boxes of four identical numbers boxes. For as large a number k prove, that we can always find k balanced subtables, of which no two overlap, i.e. do not have a common box.

6 On the board are written 100 mutually different positive real numbers, such that for any three different numbers a, b, c is $a^{2}+b c$ is an integer. Prove that for any two numbers x, y from the board, number $\frac{x}{y}$ is rational.

