AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1999

www.artofproblemsolving.com/community/c1078241
by parmenides51

1 We are allowed to put several brackets in the expression

$$
\frac{29: 28: 27: 26: \ldots: 17: 16}{15: 14: 13: 12: \ldots: 3: 2}
$$

(a) Find the smallest possible integer value we can obtain in that way.
(b) Find all possible integer values that can be obtained.

2 In a tetrahedron $A B C D, E$ and F are the midpoints of the medians from A and D. Find the ratio of the volumes of tetrahedra $B C E F$ and $A B C D$.

3 Show that there exists a triangle $A B C$ such that $a \neq b$ and $a+t_{a}=b+t_{b}$, where t_{a}, t_{b} are the medians corresponding to a, b, respectively. Also prove that there exists a number k such that every such triangle satisfies $a+t_{a}=b+t_{b}=k(a+b)$. Finally, find all possible ratios $a: b$ in such triangles.

4 In a certain language there are only two letters, A and B. We know that (i) There are no words of length 1, and the only words of length 2 are $A B$ and $B B$.
(ii) A segment of length $n>2$ is a word if and only if it can be obtained from a word of length less than n by replacing each letter B by some (not necessarily the same) word.
Prove that the number of words of length n is equal to $\frac{2^{n}+2 \cdot(-1)^{n}}{3}$
5 Given an acute angle $A P X$ in the plane, construct a square $A B C D$ such that P lies on the side $B C$ and ray $P X$ meets $C D$ in a point Q such that $A P$ bisects the angle $B A Q$.
$6 \quad$ Find all pairs of real numbers a, b for which the system of equations $\frac{x+y}{x^{2}+y^{2}}=a, \frac{x^{3}+y^{3}}{x^{2}+y^{2}}=b$ has a real solution.

