AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1996

www.artofproblemsolving.com/community/c1078292
by parmenides51

1 A sequence $\left(G_{n}\right)_{n=0}^{\infty}$ satisfies $G(0)=0$ and $G(n)=n-G(G(n-1))$ for each $n \in N$. Show that (a) $G(k) \geq G(k-1)$ for every $k \in N$;
(b) there is no integer k for which $G(k-1)=G(k)=G(k+1)$.

2 Let $A P, B Q$ and $C R$ be altitudes of an acute-angled triangle $A B C$. Show that for any point X inside the triangle $P Q R$ there exists a tetrahedron $A B C D$ such that X is the point on the face $A B C$ at the greatest distance from D (measured along the surface of the tetrahedron).

3 Given six three-element subsets of a finite set X, show that it is possible to color the elements of X in two colors so that none of the given subsets is in one color

4 Points A and B on the rays $C X$ and $C Y$ respectively of an acute angle $X C Y$ are given so that $C X<C A=C B<C Y$. Construct a line meeting the ray $C X$ and the segments $A B, B C$ at K, L, M, respectively, such that $K A \cdot Y B=X A \cdot M B=L A \cdot L B \neq 0$.
$5 \quad$ For which integers k does there exist a function $f: N \rightarrow Z$ such that $f(1995)=1996$ and $f(x y)=f(x)+f(y)+k f(g c d(x, y))$ for all $x, y \in N$?

6 Let K, L, M be points on sides $A B, B C, C A$, respectively, of a triangle $A B C$ such that $A K / A B=$ $B L / B C=C M / C A=1 / 3$. Show that if the circumcircles of the triangles $A K M, B L K, C M L$ are equal, then so are the incircles of these triangles.

