AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1994

www.artofproblemsolving.com/community/c1078310
by parmenides51
$1 \quad$ Let $f: N \rightarrow N$ be a function which satisfies $f(x)+f(x+2) \leq 2 f(x+1)$ for any $x \in N$. Prove that there exists a line in the coordinate plane containing infinitely many points of the form $(n, f(n)), n \in N$.

2 A cuboid of volume V contains a convex polyhedron M. The orthogonal projection of M onto each face of the cuboid covers the entire face. What is the smallest possible volume of polyhedron M ?

3 A convex 1994-gon M is given in the plane. A closed polygonal line consists of 997 of its diagonals. Every vertex is adjacent to exactly one diagonal. Each diagonal divides M into two sides, and the smaller of the numbers of edges on the two sides of M is defined to be the length of the diagonal. Is it posible to have
(a) 991 diagonals of length 3 and 6 of length 2 ?
(b) 985 diagonals of length 6,4 of length 8 , and 8 of length 3 ?

4 Let a_{1}, a_{2}, \ldots be a sequence of natural numbers such that for each n, the product $\left(a_{n}-1\right)\left(a_{n}-\right.$ 2)... $\left(a_{n}-n^{2}\right)$ is a positive integral multiple of $n^{n^{2}-1}$. Prove that for any finite set P of prime numbers the following inequality holds:

$$
\sum_{p \in P} \frac{1}{\log _{p} a_{p}}<1
$$

5 In an acute-angled triangle $A B C$, the altitudes $A A_{1}, B B_{1}, C C_{1}$ intersect at point V. If the triangles $A C_{1} V, B A_{1} V, C B_{1} V$ have the same area, does it follow that the triangle $A B C$ is equilateral?

6 Show that from any four distinct numbers lying in the interval $(0,1)$ one can choose two distinct numbers a and b such that

$$
\sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)}>\frac{a}{2 b}+\frac{b}{2 a}-a b-\frac{1}{8 a b}
$$

