

Czech And Slovak Mathematical Olympiad, Round III, Category A 1993

AoPS Community

1993 Czech And Slovak Olympiad IIIA

www.artofproblemsolving.com/community/c1078311 by parmenides51	
1	Find all natural numbers n for which $7n-1$ is divisible by $6n-1$
2	In fields of a 19×19 table are written integers so that any two lying on neighboring fields differ at most by 2 (two fields are neighboring if they share a side). Find the greatest possible number of mutually different integers in such a table.
3	Let AKL be a triangle such that $\angle ALK > 90^{\circ} + \angle LAK$. Construct an equilateral trapezoid $ABCD$ (i.e. with three sides equal) with $AB \perp CD$ such that K lies on the side BC , L on the diagonal AC and the lines AK and BL intersect at the circumcenter of the trapezoid.
4	The sequence (a_n) of natural numbers is defined by $a_1 = 2$ and $a_n + 1$ equals the sum of tenth powers of the digits of a_n for all $n \ge 1$. Are there numbers which appear twice in the sequence (a_n) ?
5	Find all functions $f: Z \to Z$ such that $f(-1) = f(1)$ and $f(x) + f(y) = f(x+2xy) + f(y-2xy)$ for all $x, y \in Z$
6	Show that there exists a tetrahedron which can be partitioned into eight congruent tetrahedra, each of which is similar to the original one.

AoPS Online AoPS Academy AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.