AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1993

www.artofproblemsolving.com/community/c1078311
by parmenides51
$1 \quad$ Find all natural numbers n for which $7 n-1$ is divisible by $6 n-1$
2 In fields of a 19×19 table are written integers so that any two lying on neighboring fields differ at most by 2 (two fields are neighboring if they share a side). Find the greatest possible number of mutually different integers in such a table.

3 Let $A K L$ be a triangle such that $\angle A L K>90^{\circ}+\angle L A K$. Construct an equilateral trapezoid $A B C D$ (i.e. with three sides equal) with $A B \perp C D$ such that K lies on the side $B C, L$ on the diagonal $A C$ and the lines $A K$ and $B L$ intersect at the circumcenter of the trapezoid.

4 The sequence (a_{n}) of natural numbers is defined by $a_{1}=2$ and $a_{n}+1$ equals the sum of tenth powers of the digits of a_{n} for all $n \geq 1$. Are there numbers which appear twice in the sequence $\left(a_{n}\right)$?
$5 \quad$ Find all functions $f: Z \rightarrow Z$ such that $f(-1)=f(1)$ and $f(x)+f(y)=f(x+2 x y)+f(y-2 x y)$ for all $x, y \in Z$

6 Show that there exists a tetrahedron which can be partitioned into eight congruent tetrahedra, each of which is similar to the original one.

