AoPS Community

Czech And Slovak Mathematical Olympiad, Round III, Category A 1992

www.artofproblemsolving.com/community/c1078316
by parmenides51

1 For a permutation $p\left(a_{1}, a_{2}, \ldots, a_{17}\right)$ of $1,2, \ldots, 17$, let k_{p} denote the largest k for which $a_{1}+\ldots+a_{k}<$ $a_{k+1}+\ldots+a_{17}$. Find the maximum and minimum values of k_{p} and find the sum $\sum_{p} k_{p}$ over all permutations p.

2 Let S be the total area of a tetrahedron whose edges have lengths a, b, c, d, e, f. Prove that $S \leq \frac{\sqrt{3}}{6}\left(a^{2}+b^{2}+\ldots+f^{2}\right)$

3 Let $S(n)$ denote the sum of digits of $n \in N$. Find all n such that $S(n)=S(2 n)=S(3 n)=\ldots=$ $S\left(n^{2}\right)$

4 Solve the equation $\cos 12 x=5 \sin 3 x+9 \tan ^{2} x+\cot ^{2} x$
$5 \quad$ The function $f:(0,1) \rightarrow R$ is defined by $f(x)=x$ if x is irrational, $f(x)=\frac{p+1}{q}$ if $x=\frac{p}{q}$, where $(p, q)=1$.
Find the maximum value of f on the interval $(7 / 8,8 / 9)$.
6 Let $A B C$ be an acute triangle. The altitude from B meets the circle with diameter $A C$ at points P, Q, and the altitude from C meets the circle with diameter $A B$ at M, N. Prove that the points M, N, P, Q lie on a circle.

