AoPS Community

German National Olympiad 1965, Final Round

www.artofproblemsolving.com/community/c1079529
by parmenides51

- Day 1

1 For a given positive real parameter p, solve the equation $\sqrt{p+x}+\sqrt{p-x}=x$.
2 Determine which of the prime numbers $2,3,5,7,11,13,109,151$, 491 divide $z=1963^{1965}-1963$.
3 Two parallelograms $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are given in space. Points $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}, D^{\prime \prime}$ divide the segments $A A^{\prime}, B B^{\prime}, C C^{\prime}, D D^{\prime}$ in the same ratio. What can be said about the quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$?

- Day 2

4 Find the locus of points in the plane, the sum of whose distances from the sides of a regular polygon is five times the inradius of the pentagon.

5 Determine all triples of nonzero decimal digits (x, y, z) for which the equality
 $\underbrace{z z z \ldots z}_{n}$ holds for at least two different natural numbers n.

6 Let α, β, γ be the angles of a triangle. Prove that $\cos \alpha,+\cos \beta+\cos \gamma \leq \frac{3}{2}$ and find the cases of equality.

