

AoPS Community

2000 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2000

www.artofproblemsolving.com/community/c1079562 by parmenides51

1a	Show that any odd number can be written as the difference between two perfect squares.
1b	Determine if there is an infinite sequence $a_1, a_2, a_3,, a_n$ of positive integers such that for all $n \ge 1$ the sum $a_1^2 + a_2^2 + a_3^2 +^2 + a_n^2$ is a perfect square
2a	Let x, y and z be real numbers such that $x + y + z = 0$. Show that $x^3 + y^3 + z^3 = 3xyz$.
2b	Let a, b, c and d be non-negative real numbers such that $a + b + c + d = 4$. Show that $\sqrt{a+b+c} + \sqrt{b+c+d} + \sqrt{c+d+a} + \sqrt{d+a+b} \ge 6$.
3	 a) Each point, on the perimeter of a square, is colored either red, or blue. Show that, there is a right-angled triangle where all the corners are on the square of the square and so that all the corners are on points of the same color. b) Show that, it is possible to color each point on the perimeter of one square, red, white, or blue so that, there is not a right-angled triangle where all the three corners are at points of same color.
4	For some values of c, the equation $x^c + y^c = z^c$ can be illustrated geometrically. For example, the case $c = 2$ can be illustrated by a right-angled triangle. By this we mean that, x, y, z is a solution of the equation $x^2 + y^2 = z^2$ if and only if there exists a right-angled triangle with catheters x and y and hypotenuse z. In this problem we will look at the cases $c = -\frac{1}{2}$ and $c = -1$. a) Let x, y and z be the radii of three circles intersecting each other and a line, as shown, in the figure. Show that, $x^{-\frac{1}{2}} + y^{-\frac{1}{2}} = z^{-\frac{1}{2}}$ https://cdn.artofproblemsolving.com/attachments/5/7/5315e33e1750a3a49ae11e1b5527311117c png b) Draw a geometric figure that illustrates the case in a similar way, $c = -1$. The figure must be able to be constructed with a compass and a ruler. Describe such a construction and prove that, in the figure, lines x, y and z satisfy $x^{-1} + y^{-1} = z^{-1}$. (All positive solutions of this equation should be possible values for x, y , and z on such a figure, but you don't have to prove that.)

Art of Problem Solving is an ACS WASC Accredited School.