

AoPS Community

2002 Abels Math Contest (Norwegian MO)

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2002

www.artofproblemsolving.com/community/c1079568

by parmenides51

1a	Find all integers k such that both $k + 1$ and $16k + 1$ are perfect squares.
1b	Find all integers c such that the equation $(2a + b)(2b + a) = 5^c$ has integer solutions.
2ab	a) Let x be a positive real number. Show that $x + 1/x \ge 2$. b) Let $n \ge 2$ be a positive integer and let $x_1, y_1, x_2, y_2,, x_n, y_n$ be positive real numbers such that $x_1 + x_2 + + x_n \ge x_1y_1 + x_2y_2 + + x_ny_n$. Show that $x_1 + x_2 + + x_n \le \frac{x_1}{y_1} + \frac{x_2}{y_2} + + \frac{x_n}{y_n}$
2c	If a and b are real numbers such that $a^3 - 3ab^2 = 8$ and $b^3 - 3a^2b = 11$, then what is $a^2 + b^2$?
3a	A circle with center in O is given. Two parallel tangents tangent to the circle at points M and N . Another tangent intersects the first two tangents at points K and L . Show that the circle having the line segment KL as diameter passes through O .
3b	Six line segments of lengths $17, 18, 19, 20, 21$ and 23 form the side edges of a triangular pyramid (also called a tetrahedron). Can there exist a sphere tangent to all six lines?
4	An integer is given $N > 1$. Arne and Britt play the following game: (1) Arne says a positive integer A . (2) Britt says an integer $B > 1$ that is either a divisor of A or a multiple of A . (A itself is a possibility.) (3) Arne says a new number A that is either $B - 1$, B or $B + 1$. The game continues by repeating steps 2 and 3. Britt wins if she is okay with being told the number N before the 50th has been said. Otherwise, Arne wins. a) Show that Arne has a winning strategy if $N = 10$. b) Show that Britt has a winning strategy if $N = 24$. c) For which N does Britt have a winning strategy?

🟟 AoPS Online 🔯 AoPS Academy 🔯 AoPS 🗱