Art of Problem Solving

AoPS Community

Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Final Round 2002

www.artofproblemsolving.com/community/c1079568
by parmenides51

1a Find all integers k such that both $k+1$ and $16 k+1$ are perfect squares.
1b Find all integers c such that the equation $(2 a+b)(2 b+a)=5^{c}$ has integer solutions.
2ab a) Let x be a positive real number. Show that $x+1 / x \geq 2$.
b) Let $n \geq 2$ be a positive integer and let $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n}$ be positive real numbers such that $x_{1}+x_{2}+\ldots+x_{n} \geq x_{1} y_{1}+x_{2} y_{2}+\ldots+x_{n} y_{n}$.
Show that $x_{1}+x_{2}+\ldots+x_{n} \leq \frac{x_{1}}{y_{1}}+\frac{x_{2}}{y_{2}}+\ldots+\frac{x_{n}}{y_{n}}$
2c If a and b are real numbers such that $a^{3}-3 a b^{2}=8$ and $b^{3}-3 a^{2} b=11$, then what is $a^{2}+b^{2}$?
3a A circle with center in O is given. Two parallel tangents tangent to the circle at points M and N. Another tangent intersects the first two tangents at points K and L. Show that the circle having the line segment $K L$ as diameter passes through O.

3b Six line segments of lengths $17,18,19,20,21$ and 23 form the side edges of a triangular pyramid (also called a tetrahedron). Can there exist a sphere tangent to all six lines?
$4 \quad$ An integer is given $N>1$. Arne and Britt play the following game:
(1) Arne says a positive integer A.
(2) Britt says an integer $B>1$ that is either a divisor of A or a multiple of A. (A itself is a possibility.)
(3) Arne says a new number A that is either $B-1, B$ or $B+1$.

The game continues by repeating steps 2 and 3 . Britt wins if she is okay with being told the number N before the 50th has been said. Otherwise, Arne wins.
a) Show that Arne has a winning strategy if $N=10$.
b) Show that Britt has a winning strategy if $N=24$.
c) For which N does Britt have a winning strategy?

