AoPS Community

German National Olympiad 1996, Final Round

www.artofproblemsolving.com/community/c1079922
by parmenides51

- Day 1

1 Find all natural numbers n with the following property:
Given the decimal writing of n, adding a few digits one can obtain the decimal writing of $1996 n$.
2 Let a and b be positive real numbers smaller than 1. Prove that the following two statements are equivalent:
(i) $a+b=1$,
(ii) Whenever x, y are positive real numbers such that $x<1, y<1$, $a x+b y<1$, the following inequlity holds: $\frac{1}{1-a x-b y} \leq \frac{a}{1-x}+\frac{b}{1-y}$

3 Let be given an arbitrary tetrahedron $A B C D$ with volume V. Consider all lines which pass through the barycenter S of the tetrahedron and intersect the edges $A D, B D, C D$ at points $A^{\prime}, B^{\prime}, C$ respectively. It is known that among the obtained tetrahedra there exists one with the minimal volume. Express this minimal volume in terms of V

- \quad Day 2

4 Find all pairs of real numbers (x, y) which satisfy the system

$$
\left\{\begin{array}{l}
x-y=7 \\
\sqrt[3]{x^{2}}+\sqrt[3]{x y}+\sqrt[3]{y^{2}}=7
\end{array}\right.
$$

5 Given two non-intersecting chords $A B$ and $C D$ of a circle k and a length $a<C D$. Determine a point X on k with the following property: If lines $X A$ and $X B$ intersect $C D$ at points P and Q respectively, then $P Q=a$. Show how to construct all such points X and prove that the obtained points indeed have the desired property.

6a Prove the following statement:
If a polynomial $p(x)=x^{3}+A x^{2}+B x+C$ has three real roots at least two of which are distinct, then $A^{2}+B^{2}+18 C>0$.

6b Each point of a plane is colored in one of three colors: red, black and blue. Prove that there exists a rectangle in this plane whose vertices all have the same color.

