

AoPS Community

1998 German National Olympiad

German National Olympiad 1998, Final Round

www.artofproblemsolving.com/community/c1080068

by parmenides51, Kezer

-	Day 1	
1	Find all possible numbers of lines in a plane which intersect in exactly 37 points.	
2	Two pupils <i>A</i> and <i>B</i> play the following game. They begin with a pile of 1998 matches an plays first. A player who is on turn must take a nonzero square number of matches from pile. The winner is the one who makes the last move. Decide who has the winning strat and give one such strategy.	d A the egy
3	For each nonnegative integer k find all nonnegative integers x, y, z such that $x^2 + y^2 + z^2 = z^2$	= 8 ^k
-	Day 2	
4	Let a be a positive real number. Then prove that the polynomial	
	$p(x) = a^3 x^3 + a^2 x^2 + ax + a$	
	has integer roots if and only if $a = 1$ and determine those roots.	
5	A sequence (a_n) is given by $a_0 = 0$, $a_1 = 1$ and $a_{k+2} = a_{k+1} + a_k$ for all integers $k \ge 0$. Prove that the inequality $\sum_{k=0}^{n} \frac{a_k}{2^k} < 2$ holds for all positive integers n .	
6a	Find all real pairs (x, y) that solve the system of equations	
	$x^5 = 21x^3 + y^3$ $y^5 = x^3 + 21y^3.$	(1) (2)

6b Prove that the following statement holds for all odd integers $n \ge 3$: If a quadrilateral *ABCD* can be partitioned by lines into *n* cyclic quadrilaterals, then *ABCD* is itself cyclic.

Art of Problem Solving is an ACS WASC Accredited School.