Art of Problem Solving

AoPS Community

German National Olympiad 1998, Final Round

www.artofproblemsolving.com/community/c1080068
by parmenides51, Kezer

- Day 1

1 Find all possible numbers of lines in a plane which intersect in exactly 37 points.
2 Two pupils A and B play the following game. They begin with a pile of 1998 matches and A plays first. A player who is on turn must take a nonzero square number of matches from the pile. The winner is the one who makes the last move. Decide who has the winning strategy and give one such strategy.
$3 \quad$ For each nonnegative integer k find all nonnegative integers x, y, z such that $x^{2}+y^{2}+z^{2}=8^{k}$

- Day 2

4 Let a be a positive real number. Then prove that the polynomial

$$
p(x)=a^{3} x^{3}+a^{2} x^{2}+a x+a
$$

has integer roots if and only if $a=1$ and determine those roots.
$5 \quad$ A sequence $\left(a_{n}\right)$ is given by $a_{0}=0, a_{1}=1$ and $a_{k+2}=a_{k+1}+a_{k}$ for all integers $k \geq 0$.
Prove that the inequality $\sum_{k=0}^{n} \frac{a_{k}}{2^{k}}<2$ holds for all positive integers n.
6a Find all real pairs (x, y) that solve the system of equations

$$
\begin{align*}
& x^{5}=21 x^{3}+y^{3} \tag{1}\\
& y^{5}=x^{3}+21 y^{3} . \tag{2}
\end{align*}
$$

6b Prove that the following statement holds for all odd integers $n \geq 3$:
If a quadrilateral $A B C D$ can be partitioned by lines into n cyclic quadrilaterals, then $A B C D$ is itself cyclic.

