AoPS Community

German National Olympiad 1999, Final Round

www.artofproblemsolving.com/community/c1080069
by parmenides51

- Day 1
$1 \quad$ Find all x, y which satisfy the equality $x^{2}+x y+y^{2}=97$, when x, y are
a) natural numbers,
b) integers

2 Determine all real numbers x for which $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$
3 A mathematician investigates methods of finding area of a convex quadrilateral obtains the following formula for the area A of a quadrilateral with consecutive sides $a, b, c, d: A=\frac{a+c}{2} \frac{b+d}{2}$ (1) and $A=\sqrt{(p-a)(p-b)(p-c)(p-d)}$ (2) where $p=(a+b+c+d) / 2$. However, these formulas are not valid for all convex quadrilaterals. Prove that (1) holds if and only if the quadrilateral is a rectangle, while (2) holds if and only if the quadrilateral is cyclic.

- Day 2

$4 \quad$ A convex polygon P is placed inside a unit square Q. Prove that the perimeter of P does not exceed 4.
$5 \quad$ Consider the following inequality for real numbers $x, y, z:|x-y|+|y-z|+|z-x| \leq a \sqrt{x^{2}+y^{2}+z^{2}}$
(a) Prove that the inequality is valid for $a=2 \sqrt{2}$
(b) Assuming that x, y, z are nonnegative, show that the inequality is also valid for $a=2$.

6a Suppose that an isosceles right-angled triangle is divided into m acute-angled triangles. Find the smallest possible m for which this is possible.

6b Determine all pairs (m, n) of natural numbers for which $4^{m}+5^{n}$ is a perfect square.

