Art of Problem Solving

AoPS Community

German National Olympiad 2001, Final Round

www.artofproblemsolving.com/community/c1080075
by parmenides51, Kezer

- Day 1

1 Determine all real numbers q for which the equation $x^{4}-40 x^{2}+q=0$ has four real solutions which form an arithmetic progression

2 Determine the maximum possible number of points you can place in a rectangle with lengths 14 and 28 such that any two of those points are more than 10 apart from each other.

3 Wiebke and Stefan play the following game on a rectangular sheet of paper. They start with a rectangle with 60 rows and 40 columns and cut it in turns into smaller rectangles. The cuttings must be made along the gridlines, and a player in turn may cut only one smaller rectangle. By that, Stefan makes only vertical cuts, while Wiebke makes only horizontal cuts. A player who cannot make a regular move loses the game.
(a) Who has a winning strategy if Stefan makes the first move?
(b) Who has a winning strategy if Wiebke makes the first move?

- Day 2

4 In how many ways can the Nikolaus House (see the picture) be drawn? Edges may not be erased nor duplicated, and no additional edges may be drawn. https://cdn.artofproblemsolving.com/attachments/0/5/33795820e0335686b06255180af698e536a9 png

5 The Fibonacci sequence is given by $x_{1}=x_{2}=1$ and $x_{k+2}=x_{k+1}+x_{k}$ for each $k \in N$.
(a) Prove that there are Fibonacci numbes that end in a 9 in the decimal system.
(b) Determine for which n can a Fibonacci number end in $n 9$-s in the decimal system.

6 (11) In a pyramid $S A B C D$ with the base $A B C D$ the triangles $A B D$ and $B C D$ have equal areas. Points M, N, P, Q are the midpoints of the edges $A B, A D, S C, S D$ respectively. Find the ratio between the volumes of the pyramids $S A B C D$ and $M N P Q$

6 (12) Let $A B C$ be a triangle with $\angle A=90^{\circ}$ and $\angle B<\angle C$. The tangent at A to the circumcircle k of $\triangle A B C$ intersects line $B C$ at D. Let E be the reflection of A in $B C$. Also, let X be the feet of the perpendicular from A to $B E$ and let Y be the midpoint of $A X$. Line $B Y$ meets k again at Z. Prove that line $B D$ is tangent to the circumcircle of $\triangle A D Z$.

