

AoPS Community

2016 China Northern Math Olympiad

www.artofproblemsolving.com/community/c1081542 by minecraftfaq

– July 26th, 2016

-	Grade 10
1	a_1, a_2, \cdots, a_n are positive real numbers, $a_1 + a_2 + \cdots, a_n = 1$. Prove that

$$\sum_{m=1}^{n} \frac{a_m}{\prod_{k=1}^{m} (1+a_k)} \le 1 - \frac{1}{2^n}.$$

- 2 In isosceles triangle *ABC*, $\angle CAB = \angle CBA = \alpha$, points *P*, *Q* are on different sides of line *AB*, and $\angle CAP = \angle ABQ = \beta$, $\angle CBP = \angle BAQ = \gamma$. Prove that *P*, *C*, *Q* are colinear.
- 3 Prove:(a) There are infinitely many positive intengers n, satisfying:

$$\gcd(n, [\sqrt{2}n]) = 1.$$

(b) There are infinitely many positive intengers *n*, satisfying:

 $\gcd(n, [\sqrt{2}n]) > 1.$

4 Can we put intengers $1, 2, \dots, 12$ on a circle, number them a_1, a_2, \dots, a_{12} in order. For any $1 \le i < j \le 12$, $|a_i - a_j| \ne |i - j|$?

5 Let $\theta_i \in (0, \frac{\pi}{2}) (i = 1, 2, \dots, n)$. Prove:

$$(\sum_{i=1}^n \tan \theta_i)(\sum_{i=1}^n \cot \theta_i) \ge (\sum_{i=1}^n \sin \theta_i)^2 + (\sum_{i=1}^n \cos \theta_i)^2.$$

6 Four points B, E, A, F lie on line AB in order, four points C, G, D, H lie on line CD in order, satisfying:

$$\frac{AE}{EB} = \frac{AF}{FB} = \frac{DG}{GC} = \frac{DH}{HC} = \frac{AD}{BC}.$$

Prove that $FH \perp EG$.

AoPS Community

7	Define sequence $(a_n) : a_n = 2^n + 3^n + 6^n + 1 (n \in \mathbb{Z}_+)$. Are there intenger $k \ge 2$, satisfying that $gcd(k, a_i) = 1$ for all $k \in \mathbb{Z}_+$? If yes, find the smallest k . If not, prove this.
8	Set $A = \{1, 2, \dots, n\}$. If there exists nonempty sets B, C , such that $B \cap C = \emptyset, B \cup C = A$. Sum of Squares of all elements in B is M , Sum of Squares of all elements in C is $N, M - N = 2016$. Find the minimum value of n .
-	Grade 11
1	The same as Grade 10, Problem 1.
2	Inscribed Triangle <i>ABC</i> on circle $\odot O$. Bisector of $\angle ABC$ intersects $\odot O$ at <i>D</i> . Two lines <i>PB</i> and <i>PC</i> that are tangent to $\odot O$ intersect at <i>P</i> . <i>PD</i> intersects <i>AC</i> at <i>E</i> , $\odot O$ at <i>F</i> . <i>M</i> is the midpoint of <i>BC</i> . Prove that <i>M</i> , <i>F</i> , <i>C</i> , <i>E</i> are concyclic.
3	$m(m > 1)$ is an intenger, define (a_n) : $a_0 = m$, $a_n = \varphi(a_{n-1})$ for all positive intenger n . If for all nonnegative intenger k , $a_{k+1} \mid a_k$, find all m that is not larger than 2016. Note: $\varphi(n)$ means Euler Function.
4	The same as Grade 10, Problem 4.
5	$a_{1} = 2, a_{n+1} = \frac{2^{n+1}a_{n}}{(n+\frac{1}{2})a_{n}+2^{n}} (n \in \mathbb{Z}_{+})$ (a) Find a_{n} . (b) Let $b_{n} = \frac{n^{3}+2n^{2}+2n+2}{n(n+1)(n^{2}+1)a_{n}}$. Find $S_{n} = \sum_{i=1}^{n} b_{i}$.
6	The same as Grade 10, Problem 6.
7	The same as Grade 10, Problem 7.
8	Given a set $I = \{(x_1, x_2, x_3, x_4) x_i \in \{1, 2, \dots, 11\}\}$. $A \subseteq I$, satisfying that for any (x_1, x_2, x_3, x_4) A , there exists $i, j(1 \le i < j \le 4)$, $(x_i - x_j)(y_i - y_j) < 0$. Find the maximum value of $ A $.

AoPS Online (AoPS Academy AoPS & AoPS & AoPS

Art of Problem Solving is an ACS WASC Accredited School.