AoPS Community

2016 China Northern Math Olympiad

www.artofproblemsolving.com/community/c1081542
by minecraftfaq

- July 26th, 2016
- \quad Grade 10
$1 a_{1}, a_{2}, \cdots, a_{n}$ are positive real numbers, $a_{1}+a_{2}+\cdots, a_{n}=1$. Prove that

$$
\sum_{m=1}^{n} \frac{a_{m}}{\prod_{k=1}^{m}\left(1+a_{k}\right)} \leq 1-\frac{1}{2^{n}} .
$$

2 In isosceles triangle $A B C, \angle C A B=\angle C B A=\alpha$, points P, Q are on different sides of line $A B$, and $\angle C A P=\angle A B Q=\beta, \angle C B P=\angle B A Q=\gamma$. Prove that P, C, Q are colinear.

3 Prove:
(a) There are infinitely many positive intengers n, satisfying:

$$
\operatorname{gcd}(n,[\sqrt{2} n])=1
$$

(b) There are infinitely many positive intengers n, satisfying:

$$
\operatorname{gcd}(n,[\sqrt{2} n])>1
$$

4 Can we put intengers $1,2, \cdots, 12$ on a circle, number them $a_{1}, a_{2}, \cdots, a_{12}$ in order. For any $1 \leq$ $i<j \leq 12,\left|a_{i}-a_{j}\right| \neq|i-j|$?
$5 \quad$ Let $\theta_{i} \in\left(0, \frac{\pi}{2}\right)(i=1,2, \cdots, n)$. Prove:

$$
\left(\sum_{i=1}^{n} \tan \theta_{i}\right)\left(\sum_{i=1}^{n} \cot \theta_{i}\right) \geq\left(\sum_{i=1}^{n} \sin \theta_{i}\right)^{2}+\left(\sum_{i=1}^{n} \cos \theta_{i}\right)^{2} .
$$

6 Four points B, E, A, F lie on line $A B$ in order, four points C, G, D, H lie on line $C D$ in order, satisfying:

$$
\frac{A E}{E B}=\frac{A F}{F B}=\frac{D G}{G C}=\frac{D H}{H C}=\frac{A D}{B C} .
$$

Prove that $F H \perp E G$.
$7 \quad$ Define sequence $\left(a_{n}\right): a_{n}=2^{n}+3^{n}+6^{n}+1\left(n \in \mathbb{Z}_{+}\right)$.
Are there intenger $k \geq 2$, satisfying that $\operatorname{gcd}\left(k, a_{i}\right)=1$ for all $k \in \mathbb{Z}_{+}$?
If yes, find the smallest k. If not, prove this.
8 Set $A=\{1,2, \cdots, n\}$. If there exists nonempty sets B, C, such that $B \cap C=\varnothing, B \cup C=A$. Sum of Squares of all elements in B is M, Sum of Squares of all elements in C is $N, M-N=2016$. Find the minimum value of n.

- Grade 11

1 The same as Grade 10, Problem 1.
2 Inscribed Triangle $A B C$ on circle $\odot O$. Bisector of $\angle A B C$ intersects $\odot O$ at D. Two lines $P B$ and $P C$ that are tangent to $\odot O$ intersect at $P . P D$ intersects $A C$ at $E, \odot O$ at $F . M$ is the midpoint of $B C$. Prove that M, F, C, E are concyclic.
$3 \quad m(m>1)$ is an intenger, define $\left(a_{n}\right): a_{0}=m, a_{n}=\varphi\left(a_{n-1}\right)$ for all positive intenger n. If for all nonnegative intenger $k, a_{k+1} \mid a_{k}$, find all m that is not larger than 2016. Note: $\varphi(n)$ means Euler Function.

4 The same as Grade 10, Problem 4.
$5 \quad a_{1}=2, a_{n+1}=\frac{2^{n+1} a_{n}}{\left(n+\frac{1}{2}\right) a_{n}+2^{n}}\left(n \in \mathbb{Z}_{+}\right)$
(a) Find a_{n}.
(b) Let $b_{n}=\frac{n^{3}+2 n^{2}+2 n+2}{n(n+1)\left(n^{2}+1\right) a_{n}}$.

Find $S_{n}=\sum_{i=1}^{n} b_{i}$.
6 The same as Grade 10, Problem 6.
$7 \quad$ The same as Grade 10, Problem 7.
$8 \quad$ Given a set $I=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{i} \in\{1,2, \cdots, 11\}\right\} . A \subseteq I$, satisfying that for any $\left(x_{1}, x_{2}, x_{3}, x_{4}\right),\left(y_{1}, y_{2}, y_{3}\right.$, A, there exists $i, j(1 \leq i<j \leq 4),\left(x_{i}-x_{j}\right)\left(y_{i}-y_{j}\right)<0$. Find the maximum value of $|A|$.

