AoPS Community

Finals 1984

www.artofproblemsolving.com/community/c1081577
by parmenides51

- Day 1

1 Find the number of all real functions f which map the sum of n elements into the sum of their images, such that f^{n-1} is a constant function and f^{n-2} is not. Here $f^{0}(x)=x$ and $f^{k}=f \circ f^{k-1}$ for $k \geq 1$.

2 Let n be a positive integer. For all $i, j \in\{1,2, \ldots, n\}$ define $a_{j, i}=1$ if $j=i$ and $a_{j, i}=0$ otherwise. Also, for $i=n+1, \ldots, 2 n$ and $j=1, \ldots, n$ define $a_{j, i}=-\frac{1}{n}$.
Prove that for any permutation p of the set $\{1,2, \ldots, 2 n\}$ the following inequality holds: $\sum_{j=1}^{n}\left|\sum_{k=1}^{n} a_{j, p}(k)\right|$ $\frac{n}{2}$
$3 \quad$ Let W be a regular octahedron and O be its center. In a plane P containing O circles $k_{1}\left(O, r_{1}\right)$ and $k_{2}\left(O, r_{2}\right)$ are chosen so that $k_{1} \subset P \cap W \subset k_{2}$. Prove that $\frac{r_{1}}{r_{2}} \leq \frac{\sqrt{3}}{2}$

- Day 2

$4 \quad$ A coin is tossed n times, and the outcome is written in the form ($a_{1}, a_{2}, \ldots, a_{n}$), where $a_{i}=1$ or 2 depending on whether the result of the i-th toss is the head or the tail, respectively. Set $b_{j}=a_{1}+a_{2}+\ldots+a_{j}$ for $j=1,2, \ldots, n$, and let $p(n)$ be the probability that the sequence $b_{1}, b_{2}, \ldots, b_{n}$ contains the number n. Express $p(n)$ in terms of $p(n-1)$ and $p(n-2)$.

5 A regular hexagon of side 1 is covered by six unit disks. Prove that none of the vertices of the hexagon is covered by two (or more) discs.

6 Cities P_{1}, \ldots, P_{1025} are connected to each other by airlines A_{1}, \ldots, A_{10} so that for any two distinct cities P_{k} and P_{m} there is an airline offering a direct flight between them. Prove that one of the airlines can offer a round trip with an odd number of flights.

