Art of Problem Solving

AoPS Community

Finals 1983

www.artofproblemsolving.com/community/c1081578
by parmenides51

- Day 1

1 On the plane are given a convex n-gon $P_{1} P_{2} \ldots . P_{n}$ and a point Q inside it, not lying on any of its diagonals. Prove that if n is even, then the number of triangles $P_{i} P_{j} P_{k}$ containing the point Q is even.

2 Let be given an irrational number a in the interval $(0,1)$ and a positive integer N.
Prove that there exist positive integers p, q, r, s such that $\frac{p}{q}<a<\frac{r}{s}, \frac{r}{s}-\frac{p}{q}<\frac{1}{N}$, and $r q-p s=1$.

3 Consider the following one-player game on an infinite chessboard. If two horizontally or vertically adjacent squares are occupied by a pawn each, and a square on the same line that is adjacent to one of them is empty, then it is allowed to remove the two pawns and place a pawn on the third (empty) square. Prove that if in the initial position all the pawns were forming a rectangle with the number of squares divisible by 3, then it is not possible to end the game with only one pawn left on the board.

- Day 2

4 Prove that if natural numbers a, b, c, d satisfy the equality $a b=c d$, then $\frac{g c d(a, c) g c d(a, d)}{g c d(a, b, c, d)}=a$
5 On the plane are given unit vectors $\overrightarrow{a_{1}}, \overrightarrow{a_{2}}, \overrightarrow{a_{3}}$. Show that one can choose numbers $c_{1}, c_{2}, c_{3} \in$ $\{-1,1\}$ such that the length of the vector $c_{1} \overrightarrow{a_{1}}+c_{2} \overrightarrow{a_{2}}+c_{3} \overrightarrow{a_{3}}$ is at least 2 .

6 Prove that if all dihedral angles of a tetrahedron are acute, then all its faces are acute-angled triangles.

