

AoPS Community

Finals 1983

www.artofproblemsolving.com/community/c1081578 by parmenides51

-	Day 1
1	On the plane are given a convex <i>n</i> -gon $P_1P_2P_n$ and a point Q inside it, not lying on any of its diagonals. Prove that if n is even, then the number of triangles $P_iP_jP_k$ containing the point Q is even.
2	Let be given an irrational number a in the interval $(0,1)$ and a positive integer N . Prove that there exist positive integers p, q, r, s such that $\frac{p}{q} < a < \frac{r}{s}, \frac{r}{s} - \frac{p}{q} < \frac{1}{N}$, and $rq - ps = 1$.
3	Consider the following one-player game on an infinite chessboard. If two horizontally or ver- tically adjacent squares are occupied by a pawn each, and a square on the same line that is adjacent to one of them is empty, then it is allowed to remove the two pawns and place a pawn on the third (empty) square. Prove that if in the initial position all the pawns were forming a rectangle with the number of squares divisible by 3, then it is not possible to end the game with only one pawn left on the board.
-	Day 2
4	Prove that if natural numbers a, b, c, d satisfy the equality $ab = cd$, then $\frac{gcd(a,c)gcd(a,d)}{gcd(a,b,c,d)} = a$
5	On the plane are given unit vectors $\vec{a_1}, \vec{a_2}, \vec{a_3}$. Show that one can choose numbers $c_1, c_2, c_3 \in \{-1, 1\}$ such that the length of the vector $c_1\vec{a_1} + c_2\vec{a_2} + c_3\vec{a_3}$ is at least 2.
6	Prove that if all dihedral angles of a tetrahedron are acute, then all its faces are acute-angled triangles.

AoPS Online AoPS Academy AoPS Caster