Art of Problem Solving

AoPS Community

Finals 1982

www.artofproblemsolving.com/community/c1081583
by parmenides51

- Day 1

1 Find a way of arranging n girls and n boys around a round table for which $d_{n}-c_{n}$ is maximum, where dn is the number of girls sitting between two boys and c_{n} is the number of boys sitting between two girls.

2 In a cyclic quadrilateral $A B C D$ the line passing through the midpoint of $A B$ and the intersection point of the diagonals is perpendicular to $C D$. Prove that either the sides $A B$ and $C D$ are parallel or the diagonals are perpendicular

3 Find all pairs of positive numbers (x, y) which satisfy the system of equations $x^{2}+y^{2}=a^{2}+b^{2}$ $x^{3}+y^{3}=a^{3}+b^{3}$
where a and b are given positive numbers.

- Day 2

4 On a plane is given a finite set of points. Prove that the points can be covered by open squares $Q_{1}, Q_{2}, \ldots, Q_{n}$ such that $1 \leq \frac{N_{j}}{S_{j}} \leq 4$ for $j=1, \ldots, n$, where N_{j} is the number of points from the set inside square Q_{j} and S_{j} is the area of Q_{j}.

5 Integers $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=x_{0}, x_{n+1}=x_{1}$ satisfy the inequality $(-1)^{x_{k}} x_{k-1} x_{k+1}>0$ for $k=1,2, \ldots, n$. Prove that the difference $\sum_{k=0}^{n-1} x_{k}-\sum_{k=0}^{n-1}\left|x_{k}\right|$ is divisible by 4 .

6 Prove that the sum of dihedral angles in an arbitrary tetrahedron is greater than 2π

