

AoPS Community

Peru IMO TST 2019

www.artofproblemsolving.com/community/c1082745 by parmenides51, Jafet98

Day 1 In each cell of a chessboard with 2 rows and 2019 columns a real number is written so that: 1 - There are no two numbers written in the first row that are equal to each other. - The numbers written in the second row coincide with (in some another order) the numbers written in the first row. - The two numbers written in each column are different and they add up to a rational number. Determine the maximum quantity of irrational numbers that can be in the chessboard. 2 A *power* is a positive integer of the form a^k , where a and k are positive integers with $k \ge 2$. Let S be the set of positive integers which cannot be expressed as sum of two powers (for example, 4, 7, 15 and 27 are elements of S). Determine whether the set S has a finite or infinite number of elements. Let I, O and Γ be the incenter, circumcenter and the circumcircle of triangle ABC, respectively. 3 Line AI meets Γ at M ($M \neq A$). The circumference ω is tangent internally to Γ at T, and is tangent to the lines AB and AC. The tangents through A and T to Γ intersect at P. Lines PI and TM meet at Q. Prove that the lines QA and MO meet at a point on Γ . Day 2 Let $k \ge 0$ an integer. The sequence $a_0, a_1, a_2, a_3, \dots$ is defined as follows: 4 $-a_0 = k$ - For $n \ge 1$, we have that a_n is the smallest integer greater than a_{n-1} so that $a_n + a_{n-1}$ is a perfect square. Prove that there are exactly $\left|\sqrt{2k}\right|$ positive integers that cannot be written as the difference of two elements of such a sequence. *Note.* If x is a real number, |x| denotes the greatest integer smaller or equal than x. Let m and n two given integers. Ana thinks of a pair of real numbers x, y and then she tells 5 Beto the values of $x^m + y^m$ and $x^n + y^n$, in this order. Beto's goal is to determine the value of

xy using that information. Find all values of m and n for which it is possible for Beto to fulfill

his wish, whatever numbers that Ana had chosen.

AoPS Community

- **6** Let p and q two positive integers. Determine the greatest value of n for which there exists sets A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n such that:
 - The sets A_1, A_2, \ldots, A_n have p elements each one.
 - The sets B_1, B_2, \ldots, B_n have q elements each one.
 - For all $1 \le i, j \le n$, sets A_i and B_j are disjoint if and only if i = j.

Act of Problem Solving is an ACS WASC Accredited School.