Art of Problem Solving

AoPS Community

Balkan MO Shortlist 2013

www.artofproblemsolving.com/community/c1085161
by parmenides51, mavropnevma

- Algebra

A1 Positive real numbers a, b, c satisfy $a b+b c+c a=3$. Prove the inequality

$$
\frac{1}{4+(a+b)^{2}}+\frac{1}{4+(b+c)^{2}}+\frac{1}{4+(c+a)^{2}} \leq \frac{3}{8}
$$

A2 Let a, b, c and d are positive real numbers so that $a b c d=\frac{1}{4}$. Prove that holds

$$
\left(16 a c+\frac{a}{c^{2} b}+\frac{16 c}{a^{2} d}+\frac{4}{a c}\right)\left(b d+\frac{b}{256 d^{2} c}+\frac{d}{b^{2} a}+\frac{1}{64 b d}\right) \geq \frac{81}{4}
$$

When does the equality hold?
A3 Prove that the polynomial $P(x)=\left(x^{2}-8 x+25\right)\left(x^{2}-16 x+100\right) \ldots\left(x^{2}-8 n x+25 n^{2}\right)-1, n \in N^{*}$, cannot be written as the product of two polynomials with integer coefficients of degree greater or equal to 1 .

A4 Find all positive integers n such that there exist non-constant polynomials with integer coefficients $f_{1}(x), \ldots, f_{n}(x)$ (not necessarily distinct) and $g(x)$ such that

$$
1+\prod_{k=1}^{n}\left(f_{k}^{2}(x)-1\right)=\left(x^{2}+2013\right)^{2} g^{2}(x)
$$

A5 Determine all positive integers n such that $f_{n}(x, y, z)=x^{2 n}+y^{2 n}+z^{2 n}-x y-y z-z x$ divides $g_{n}(x, y, z)=(x-y)^{5 n}+(y-z)^{5 n}+(z-x)^{5 n}$, as polynomials in x, y, z with integer coefficients.

A6 Let S be the set of positive real numbers. Find all functions $f: S^{3} \rightarrow S$ such that, for all positive real numbers x, y, z and k, the following three conditions are satisfied:
(a) $x f(x, y, z)=z f(z, y, x)$,
(b) $f\left(x, k y, k^{2} z\right)=k f(x, y, z)$,
(c) $f(1, k, k+1)=k+1$.
(United Kingdom)

2013 Balkan MO Shortlist

A7 Suppose that k is a positive integer. A bijective map $f: Z \rightarrow Z$ is said to be k-jumpy if $|f(z)-z| \leq k$ for all integers z.
Is it that case that for every k, each k-jumpy map is a composition of 1 -jumpy maps?
It is well known that this is the case when the support of the map is finite.

- Combinatorics

C1 In a mathematical competition, some competitors are friends; friendship is mutual, that is, when A is a friend of B, then B is also a friend of A.
We say that $n \geq 3$ different competitors $A_{1}, A_{2}, \ldots, A_{n}$ form a weakly-friendly cycle if A_{i} is not a friend of A_{i+1} for $1 \leq i \leq n$ (where $A_{n+1}=A_{1}$), and there are no other pairs of non-friends among the components of the cycle.

The following property is satisfied:
"for every competitor C and every weakly-friendly cycle \mathcal{S} of competitors not including C, the set of competitors D in \mathcal{S} which are not friends of C has at most one element"

Prove that all competitors of this mathematical competition can be arranged into three rooms, such that every two competitors in the same room are friends.
(Serbia)
C2 Some squares of an $n \times n$ chessboard have been marked ($n \in N^{*}$). Prove that if the number of marked squares is at least $n\left(\sqrt{n}+\frac{1}{2}\right)$, then there exists a rectangle whose vertices are centers of marked squares.

C3 The square $A B C D$ is divided into n^{2} equal small (elementary) squares by parallel lines to its sides, (see the figure for the case $n=4$). A spider starts from point A and moving only to the right and up tries to arrive at point C. Every movement of the spider consists of: k steps to the right and m steps up or m steps to the right and k steps up (which can be performed in any way). The spider first makes l movements and in then, moves to the right or up without any restriction. If $n=m \cdot l$, find all possible ways the spider can approach the point C, where n, m, k, l are positive integers with $k<m$. https://cdn.artofproblemsolving.com/attachments/2/d/4fb71086beb844ca7c492a30c7d333fa08d38 png

C4 A closed, non-self-intersecting broken line L is drawn over a $(2 n+1) \times(2 n+1)$ chessboard in such a way that the set of L's vertices coincides with the set of the vertices of the boards squares and every edge in L is a side of some board square. All board squares lying in the interior of L are coloured in red. Prove that the number of neighbouring pairs of red squares in every row of the board is even.

C5 The cells of an $n \times n$ chessboard are coloured in several colours so that no 2×2 square contains four cells of the same colour. A proper path of length m is a sequence $a_{1}, a_{2}, \ldots, a_{m}$ of distinct

2013 Balkan MO Shortlist

cells in which the cells a_{i} and a_{i+1} have a common side and are coloured in different colours for all $1 \leq i<m$. Show that there exists a proper path of length n.

- Geometry

G1 In a triangle $A B C$, the excircle ω_{a} opposite A touches $A B$ at P and $A C$ at Q, while the excircle ω_{b} opposite B touches $B A$ at M and $B C$ at N. Let K be the projection of C onto $M N$ and let L be the projection of C onto $P Q$. Show that the quadrilateral $M K L P$ is cyclic.
(Bulgaria)
G2 Let $A B C D$ be a quadrilateral, let O be the intersection point of diagonals $A C$ and $B D$, and let P be the intersection point of sides $A B$ and $C D$. Consider the parallelograms $A O D E$ and $B O C F$. Prove that E, F and P are collinear.

G3 Two circles Γ_{1} and Γ_{2} intersect at points M, N. A line ℓ is tangent to Γ_{1}, Γ_{2} at A and B, respectively. The lines passing through A and B and perpendicular to ℓ intersects $M N$ at C and D respectively. Prove that $A B C D$ is a parallelogram.

G4 Let $c(O, R)$ be a circle, $A B$ a diameter and C an arbitrary point on the circle different than A and B such that $\angle A O C>90^{\circ}$. On the radius $O C$ we consider point K and the circle $c_{1}(K, K C)$. The extension of the segment $K B$ meets the circle (c) at point E. From E we consider the tangents $E S$ and $E T$ to the circle $\left(c_{1}\right)$. Prove that the lines $B E, S T$ and $A C$ are concurrent.

G5 Let $A B C$ be an acute triangle with $A B<A C<B C$ inscribed in a circle (c) and let E be an arbitrary point on its altitude $C D$. The circle $\left(c_{1}\right)$ with diameter $E C$, intersects the circle (c) at point K (different than C), the line $A C$ at point L and the line $B C$ at point M. Finally the line $K E$ intersects $A B$ at point N. Prove that the quadrilateral $D L M N$ is cyclic.

- Number Theory

N1 Let p be a prime number. Determine all triples (a, b, c) of positive integers such that $a+b+c<$ $2 p \sqrt{p}$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{p}$

N2 Determine all positive integers x, y and z such that $x^{5}+4^{y}=2013^{z}$.
(Serbia)
N3 Determine all quadruplets (x, y, z, t) of positive integers, such that $12^{x}+13^{y}-14^{z}=2013^{t}$.
N4 Let p be a prime number greater than 3 . Prove that the sum $1^{p+2}+2^{p+2}+\ldots+(p-1)^{p+2}$ is divisible by p^{2}.

N5 Prove that there do not exist distinct prime numbers p and q and a positive integer n satisfying the equation $p^{q-1}-q^{p-1}=4 n^{2}$

N6 Prove that there do not exist distinct prime numbers p and q and a positive integer n satisfying the equation $p^{q-1}-q^{p-1}=4 n^{3}$

N7 Two distinct positive integers are called close if their greatest common divisor equals their difference. Show that for any n, there exists a set S of n elements such that any two elements of S are close.

N8 Suppose that a and b are integers. Prove that there are integers c and d such that $a+b+c+d=0$ and $a c+b d=0$, if and only if $a-b$ divides $2 a b$.

N9 Let $n \geq 2$ be a given integer. Determine all sequences x_{1}, \ldots, x_{n} of positive rational numbers such that $x_{1}^{x_{2}}=x_{2}^{x_{3}}=\ldots=x_{n-1}^{x_{n}}=x_{n}^{x_{1}}$

