AoPS Community

12th RMM 2020

www.artofproblemsolving.com/community/c1085509
by parmenides51, pinetree1, magicarrow, Ankoganit

- Day 1

1 Let $A B C$ be a triangle with a right angle at C. Let I be the incentre of triangle $A B C$, and let D be the foot of the altitude from C to $A B$. The incircle ω of triangle $A B C$ is tangent to sides $B C, C A$, and $A B$ at A_{1}, B_{1}, and C_{1}, respectively. Let E and F be the reflections of C in lines $C_{1} A_{1}$ and $C_{1} B_{1}$, respectively. Let K and L be the reflections of D in lines $C_{1} A_{1}$ and $C_{1} B_{1}$, respectively.

Prove that the circumcircles of triangles $A_{1} E I, B_{1} F I$, and $C_{1} K L$ have a common point.
2 Let $N \geq 2$ be an integer, and let $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots b_{N}\right)$ be sequences of nonnegative integers. For each integer $i \notin\{1, \ldots, N\}$, let $a_{i}=a_{k}$ and $b_{i}=b_{k}$, where $k \in\{1, \ldots, N\}$ is the integer such that $i-k$ is divisible by n. We say a is b-harmonic if each a_{i} equals the following arithmetic mean:

$$
a_{i}=\frac{1}{2 b_{i}+1} \sum_{s=-b_{i}}^{b_{i}} a_{i+s} .
$$

Suppose that neither \mathbf{a} nor \mathbf{b} is a constant sequence, and that both \mathbf{a} is \mathbf{b}-harmonic and \mathbf{b} is a-harmonic.

Prove that at least $N+1$ of the numbers $a_{1}, \ldots, a_{N}, b_{1}, \ldots, b_{N}$ are zero.
$3 \quad$ Let $n \geq 3$ be an integer. In a country there are n airports and n airlines operating two-way flights. For each airline, there is an odd integer $m \geq 3$, and m distinct airports c_{1}, \ldots, c_{m}, where the flights offered by the airline are exactly those between the following pairs of airports: c_{1} and $c_{2} ; c_{2}$ and $c_{3} ; \ldots ; c_{m-1}$ and $c_{m} ; c_{m}$ and c_{1}.
Prove that there is a closed route consisting of an odd number of flights where no two flights are operated by the same airline.

- Day 2

$4 \quad$ Let \mathbb{N} be the set of all positive integers. A subset A of \mathbb{N} is sum-free if, whenever x and y are (not necessarily distinct) members of A, their sum $x+y$ does not belong to A. Determine all surjective functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that, for each sum-free subset A of \mathbb{N}, the image $\{f(a): a \in A\}$ is also sum-free.
[i]Note: a function $f: \mathbb{N} \rightarrow \mathbb{N}$ is surjective if, for every positive integer n, there exists a positive integer m such that $f(m)=n$. $/ \mathrm{i}]$

5 A lattice point in the Cartesian plane is a point whose coordinates are both integers. A lattice polygon is a polygon all of whose vertices are lattice points.
Let Γ be a convex lattice polygon. Prove that Γ is contained in a convex lattice polygon Ω such that the vertices of Γ all lie on the boundary of Ω, and exactly one vertex of Ω is not a vertex of Γ.
$6 \quad$ For each integer $n \geq 2$, let $F(n)$ denote the greatest prime factor of n. A strange pair is a pair of distinct primes p and q such that there is no integer $n \geq 2$ for which $F(n) F(n+1)=p q$.

Prove that there exist infinitely many strange pairs.

