

AoPS Community

Kurschak Competition 2011

www.artofproblemsolving.com/community/c1085684 by Ti-Ci

- **1** Let $a_1, a_2, ...$ be an infinite sequence of positive integers such that for any $k, \ell \in \mathbb{Z}_+$, $a_{k+\ell}$ is divisible by $gcd(a_k, a_\ell)$. Prove that for any integers $1 \leq k \leq n$, $a_n a_{n-1} \dots a_{n-k+1}$ is divisible by $a_k a_{k-1} \dots a_1$.
- **2** Let *n* be a positive integer. Denote by a(n) the ways of expression $n = x_1 + x_2 + ...$ where $x_1 \leq x_2 \leq ...$ are positive integers and $x_i + 1$ is a power of 2 for each *i*. Denote by b(n) the ways of expression $n = y_1 + y_2 + ...$ where y_i is a positive integer and $2y_i \leq y_{i+1}$ for each *i*. Prove that a(n) = b(n).
- **3** Given 2n points and 3n lines on the plane. Prove that there is a point *P* on the plane such that the sum of the distances of *P* to the 3n lines is less than the sum of the distances of *P* to the 2n points.

