AoPS Community

Kurschak Competition 2011

www.artofproblemsolving.com/community/c1085684
by Ti-Ci

1 Let a_{1}, a_{2}, \ldots be an infinite sequence of positive integers such that for any $k, \ell \in \mathbb{Z}_{+}, a_{k+\ell}$ is divisible by $\operatorname{gcd}\left(a_{k}, a_{\ell}\right)$. Prove that for any integers $1 \leqslant k \leqslant n, a_{n} a_{n-1} \ldots a_{n-k+1}$ is divisible by $a_{k} a_{k-1} \ldots a_{1}$.

2 Let n be a positive integer. Denote by $a(n)$ the ways of expression $n=x_{1}+x_{2}+\ldots$ where $x_{1} \leqslant x_{2} \leqslant \ldots$ are positive integers and $x_{i}+1$ is a power of 2 for each i. Denote by $b(n)$ the ways of expression $n=y_{1}+y_{2}+\ldots$ where y_{i} is a positive integer and $2 y_{i} \leqslant y_{i+1}$ for each i.
Prove that $a(n)=b(n)$.
3 Given $2 n$ points and $3 n$ lines on the plane. Prove that there is a point P on the plane such that the sum of the distances of P to the $3 n$ lines is less than the sum of the distances of P to the $2 n$ points.

