AoPS Community

Final Round - Switzerland 2020

www.artofproblemsolving.com/community/c1086477
by augustin_p, Muriatic, parmenides51, Pathological

- Day 1
$1 \quad$ Let \mathbb{N} be the set of positive integers. Find all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $m, n \in \mathbb{N}$,

$$
f(m)+f(n) \mid m+n .
$$

2 Let $A B C$ be an acute triangle. Let M_{A}, M_{B} and M_{C} be the midpoints of sides $B C, C A$, respectively $A B$. Let $M_{A}^{\prime}, M_{B}^{\prime}$ and M_{C}^{\prime} be the the midpoints of the arcs $B C, C A$ and $A B$ respectively of the circumscriberd circle of triangle $A B C$. Let P_{A} be the intersection of the straight line $M_{B} M_{C}$ and the perpendicular to $M_{B}^{\prime} M_{C}^{\prime}$ through A. Define P_{B} and P_{C} similarly. Show that the straight line $M_{A} P_{A}, M_{B} P_{B}$ and $M_{C} P_{C}$ intersect at one point.

3 We are given n distinct rectangles in the plane. Prove that between the $4 n$ interior angles formed by these rectangles at least $4 \sqrt{n}$ are distinct.

4 Let φ denote the Euler phi-function. Prove that for every positive integer n

$$
2^{n(n+1)} \mid 32 \cdot \varphi\left(2^{2^{n}}-1\right) .
$$

- \quad Day 2

5 Find all the positive integers a, b, c such that

$$
a!\cdot b!=a!+b!+c!
$$

6 Let $n \geq 2$ be an integer. Consider the following game: Initially, k stones are distributed among the n^{2} squares of an $n \times n$ chessboard. A move consists of choosing a square containing at least as many stones as the number of its adjacent squares (two squares are adjacent if they share a common edge) and moving one stone from this square to each of its adjacent squares. Determine all positive integers k such that:
(a) There is an initial configuration with k stones such that no move is possible.
(b) There is an initial configuration with k stones such that an infinite sequence of moves is possible.

7 Let $A B C D$ be an isosceles trapezoid with bases $A D>B C$. Let X be the intersection of the bisectors of $\angle B A C$ and $B C$. Let E be the intersection of $D B$ with the parallel to the bisector of $\angle C B D$ through X and let F be the intersection of $D C$ with the parallel to the bisector of $\angle D C B$ through X. Show that quadrilateral $A E F D$ is cyclic.

8 Let n be a positive integer. Let $x_{1} \leq x_{2} \leq \cdots \leq x_{m}$ be a sequence of real numbers such that $x_{1}+x_{2}+\cdots+x_{n}=0$ and $x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1$. Prove that $x_{1} x_{n} \leqslant-\frac{1}{n}$.
Switzerland 2020 Swiss MO p8 wording

