

AoPS Community

2020 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2020

www.artofproblemsolving.com/community/c1087042 by Tintarn, NJOY, GeoMetrix, Durga01

- First (Correspondence) Round
- 1 Let ABC be a triangle with $\angle C = 90^{\circ}$, and A_0 , B_0 , C_0 be the mid-points of sides BC, CA, AB respectively. Two regular triangles AB_0C_1 and BA_0C_2 are constructed outside ABC. Find the angle $C_0C_1C_2$.
- 2 Let *ABCD* be a cyclic quadrilateral. A circle passing through *A* and *B* meets *AC* and *BD* at points *E* and *F* respectively. The lines *AF* and *BC* meet at point *P*, and the lines *BE* and *AD* meet at point *Q*. Prove that *PQ* is parallel to *CD*.
- **3** Let ABC be a triangle with $\angle C = 90^{\circ}$, and D be a point outside ABC, such that $\angle ADC = \angle BAC$. The segments CD and AB meet at point E. It is known that the distance from E to AC is equal to the circumradius of triangle ADE. Find the angles of triangle ABC.
- 4 Let *ABCD* be an isosceles trapezoid with bases *AB* and *CD*. Prove that the centroid of triangle *ABD* lies on *CF* where *F* is the projection of *D* to *AB*.
- 5 Let BB_1 , CC_1 be the altitudes of triangle ABC, and AD be the diameter of its circumcircle. The lines BB_1 and DC_1 meet at point E, the lines CC_1 and DB_1 meet at point F. Prove that $\angle CAE = \angle BAF$.
- **6** Circles ω_1 and ω_2 meet at point P, Q. Let O be the common point of external tangents of ω_1 and ω_2 . A line passing through O meets ω_1 and ω_2 at points A, B located on the same side with respect to line segment PQ. The line PA meets ω_2 for the second time at C and the line QB meets ω_1 for the second time at D. Prove that O C D are collinear.
- **7** Prove that the medial lines of triangle *ABC* meets the sides of triangle formed by its excenters at six concyclic points.
- 8 Two circles meeting at points P and R are given. Let ℓ_1 , ℓ_2 be two lines passing through P. The line ℓ_1 meets the circles for the second time at points A_1 and B_1 . The tangents at these points to the circumcircle of triangle A_1RB_1 meet at point C_1 . The line C_1R meets A_1B_1 at point D_1 . Points A_2 , B_2 , C_2 , D_2 are defined similarly. Prove that the circles D_1D_2P and C_1C_2R touch.
- **9** The vertex *A*, center *O* and Euler line ℓ of a triangle *ABC* is given. It is known that ℓ intersects *AB*, *AC* at two points equidistant from *A*. Restore the triangle.

AoPS Community

2020 Sharygin Geometry Olympiad

- **10** Given are a closed broken line $A_1A_2...A_n$ and a circle ω which touches each of lines $A_1A_2, A_2A_3, ..., A_nA_1$. Call the link *good*, if it touches ω , and *bad* otherwise (i.e. if the extension of this link touches ω). Prove that the number of bad links is even.
- **11** Let ABC be a triangle with $\angle A = 60^{\circ}$, AD be its bisector, and PDQ be a regular triangle with altitude DA. The lines PB and QC meet at point K. Prove that AK is a symmetrian of ABC.
- **12** Let *H* be the orthocenter of a nonisosceles triangle ABC. The bisector of angle BHC meets AB and AC at points *P* and *Q* respectively. The perpendiculars to AB and AC from *P* and *Q* meet at *K*. Prove that *KH* bisects the segment *BC*.
- **13** Let *I* be the incenter of triangle *ABC*. The excircle with center I_A touches the side *BC* at point *A'*. The line *l* passing through *I* and perpendicular to *BI* meets I_AA' at point *K* lying on the medial line parallel to *BC*. Prove that $\angle B \le 60^\circ$.
- 14 A non-isosceles triangle is given. Prove that one of the circles touching internally its incircle and circumcircle and externally one of its excircles passes through a vertex of the triangle.
- **15** A circle passing through the vertices *B* and *D* of quadrilateral *ABCD* meets *AB*, *BC*, *CD*, and *DA* at points *K*, *L*, *M*, and *N* respectively. A circle passing through *K* and *M* meets *AC* at *P* and *Q*. Prove that *L*, *N*, *P*, and *Q* are concyclic.
- **16** Cevians *AP* and *AQ* of a triangle *ABC* are symmetric with respect to its bisector. Let *X*, *Y* be the projections of *B* to *AP* and *AQ* respectively, and *N*, *M* be the projections of *C* to *AP* and *AQ* respectively. Prove that *XM* and *NY* meet on *BC*.
- **17** Chords A_1A_2 and B_1B_2 meet at point *D*. Suppose *D'* is the inversion image of *D* and the line A_1B_1 meets the perpendicular bisector to *DD'* at a point *C*. Prove that $CD \parallel A_2B_2$.
- **18** Bisectors AA_1 , BB_1 , and CC_1 of triangle ABC meet at point I. The perpendicular bisector to BB_1 meets AA_1 , CC_1 at points A_0 , C_0 respectively. Prove that the circumcircles of triangles A_0IC_0 and ABC touch.
- **19** Quadrilateral ABCD is such that $AB \perp CD$ and $AD \perp BC$. Prove that there exist a point such that the distances from it to the sidelines are proportional to the lengths of the corresponding sides.
- **20** The line touching the incircle of triangle *ABC* and parallel to *BC* meets the external bisector of angle *A* at point *X*. Let *Y* be the midpoint of arc *BAC* of the circumcircle. Prove that the angle *XIY* is right.
- **21** The diagonals of bicentric quadrilateral *ABCD* meet at point *L*. Given are three segments equal to *AL*, *BL*, *CL*. Restore the quadrilateral using a compass and a ruler.

AoPS Community

2020 Sharygin Geometry Olympiad

- **22** Let Ω be the circumcircle of cyclic quadrilateral *ABCD*. Consider such pairs of points *P*, *Q* of diagonal *AC* that the rays *BP* and *BQ* are symmetric with respect the bisector of angle *B*. Find the locus of circumcenters of triangles *PDQ*.
- **23** A non-self-intersecting polygon is nearly convex if precisely one of its interior angles is greater than 180°.

One million distinct points lie in the plane in such a way that no three of them are collinear. We would like to construct a nearly convex one-million-gon whose vertices are precisely the one million given points. Is it possible that there exist precisely ten such polygons?

24 Let *I* be the incenter of a tetrahedron *ABCD*, and *J* be the center of the exsphere touching the face *BCD* containing three remaining faces (outside these faces). The segment *IJ* meets the circumsphere of the tetrahedron at point *K*. Which of two segments *IJ* and *JK* is longer?

AoPS Online 🔯 AoPS Academy 🙋 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.