AoPS Community

2020 Sharygin Geometry Olympiad

Sharygin Geometry Olympiad 2020

www.artofproblemsolving.com/community/c1087042
by Tintarn, NJOY, GeoMetrix, Durga01

- \quad First (Correspondence) Round

1 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and A_{0}, B_{0}, C_{0} be the mid-points of sides $B C, C A, A B$ respectively. Two regular triangles $A B_{0} C_{1}$ and $B A_{0} C_{2}$ are constructed outside $A B C$. Find the angle $C_{0} C_{1} C_{2}$.

2 Let $A B C D$ be a cyclic quadrilateral. A circle passing through A and B meets $A C$ and $B D$ at points E and F respectively. The lines $A F$ and $B C$ meet at point P, and the lines $B E$ and $A D$ meet at point Q. Prove that $P Q$ is parallel to $C D$.

3 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and D be a point outside $A B C$, such that $\angle A D C=$ $\angle B A C$. The segments $C D$ and $A B$ meet at point E. It is known that the distance from E to $A C$ is equal to the circumradius of triangle $A D E$. Find the angles of triangle $A B C$.

4 Let $A B C D$ be an isosceles trapezoid with bases $A B$ and $C D$. Prove that the centroid of triangle $A B D$ lies on $C F$ where F is the projection of D to $A B$.

5 Let $B B_{1}, C C_{1}$ be the altitudes of triangle $A B C$, and $A D$ be the diameter of its circumcircle. The lines $B B_{1}$ and $D C_{1}$ meet at point E, the lines $C C_{1}$ and $D B_{1}$ meet at point F. Prove that $\angle C A E=\angle B A F$.

6 Circles ω_{1} and ω_{2} meet at point P, Q. Let O be the common point of external tangents of ω_{1} and ω_{2}. A line passing through O meets ω_{1} and ω_{2} at points A, B located on the same side with respect to line segment $P Q$. The line $P A$ meets ω_{2} for the second time at C and the line $Q B$ meets ω_{1} for the second time at D. Prove that $O-C-D$ are collinear.

7 Prove that the medial lines of triangle $A B C$ meets the sides of triangle formed by its excenters at six concyclic points.

8 Two circles meeting at points P and R are given. Let ℓ_{1}, ℓ_{2} be two lines passing through P. The line ℓ_{1} meets the circles for the second time at points A_{1} and B_{1}. The tangents at these points to the circumcircle of triangle $A_{1} R B_{1}$ meet at point C_{1}. The line $C_{1} R$ meets $A_{1} B_{1}$ at point D_{1}. Points $A_{2}, B_{2}, C_{2}, D_{2}$ are defined similarly. Prove that the circles $D_{1} D_{2} P$ and $C_{1} C_{2} R$ touch.

9 The vertex A, center O and Euler line ℓ of a triangle $A B C$ is given. It is known that ℓ intersects $A B, A C$ at two points equidistant from A. Restore the triangle.

AoPS Community

2020 Sharygin Geometry Olympiad

10 Given are a closed broken line $A_{1} A_{2} \ldots A_{n}$ and a circle ω which touches each of lines $A_{1} A_{2}, A_{2} A_{3}, \ldots, A_{n} A_{1}$. Call the link good, if it touches ω, and bad otherwise (i.e. if the extension of this link touches ω). Prove that the number of bad links is even.

11 Let $A B C$ be a triangle with $\angle A=60^{\circ}, A D$ be its bisector, and $P D Q$ be a regular triangle with altitude $D A$. The lines $P B$ and $Q C$ meet at point K. Prove that $A K$ is a symmedian of $A B C$.

12 Let H be the orthocenter of a nonisosceles triangle $A B C$. The bisector of angle $B H C$ meets $A B$ and $A C$ at points P and Q respectively. The perpendiculars to $A B$ and $A C$ from P and Q meet at K. Prove that $K H$ bisects the segment $B C$.

13 Let I be the incenter of triangle $A B C$. The excircle with center I_{A} touches the side $B C$ at point A^{\prime}. The line l passing through I and perpendicular to $B I$ meets $I_{A} A^{\prime}$ at point K lying on the medial line parallel to $B C$. Prove that $\angle B \leq 60^{\circ}$.

14 A non-isosceles triangle is given. Prove that one of the circles touching internally its incircle and circumcircle and externally one of its excircles passes through a vertex of the triangle.

15 A circle passing through the vertices B and D of quadrilateral $A B C D$ meets $A B, B C, C D$, and $D A$ at points K, L, M, and N respectively. A circle passing through K and M meets $A C$ at P and Q. Prove that L, N, P, and Q are concyclic.

16 Cevians $A P$ and $A Q$ of a triangle $A B C$ are symmetric with respect to its bisector. Let X, Y be the projections of B to $A P$ and $A Q$ respectively, and N, M be the projections of C to $A P$ and $A Q$ respectively. Prove that $X M$ and $N Y$ meet on $B C$.

17 Chords $A_{1} A_{2}$ and $B_{1} B_{2}$ meet at point D. Suppose D^{\prime} is the inversion image of D and the line $A_{1} B_{1}$ meets the perpendicular bisector to $D D^{\prime}$ at a point C. Prove that $C D \| A_{2} B_{2}$.

18 Bisectors $A A_{1}, B B_{1}$, and $C C_{1}$ of triangle $A B C$ meet at point I. The perpendicular bisector to $B B_{1}$ meets $A A_{1}, C C_{1}$ at points A_{0}, C_{0} respectively. Prove that the circumcircles of triangles $A_{0} I C_{0}$ and $A B C$ touch.

19 Quadrilateral $A B C D$ is such that $A B \perp C D$ and $A D \perp B C$. Prove that there exist a point such that the distances from it to the sidelines are proportional to the lengths of the corresponding sides.

20 The line touching the incircle of triangle $A B C$ and parallel to $B C$ meets the external bisector of angle A at point X. Let Y be the midpoint of arc $B A C$ of the circumcircle. Prove that the angle $X I Y$ is right.

21 The diagonals of bicentric quadrilateral $A B C D$ meet at point L. Given are three segments equal to $A L, B L, C L$. Restore the quadrilateral using a compass and a ruler.

22 Let Ω be the circumcircle of cyclic quadrilateral $A B C D$. Consider such pairs of points P, Q of diagonal $A C$ that the rays $B P$ and $B Q$ are symmetric with respect the bisector of angle B. Find the locus of circumcenters of triangles $P D Q$.

23 A non-self-intersecting polygon is nearly convex if precisely one of its interior angles is greater than 180°.

One million distinct points lie in the plane in such a way that no three of them are collinear. We would like to construct a nearly convex one-million-gon whose vertices are precisely the one million given points. Is it possible that there exist precisely ten such polygons?

24 Let I be the incenter of a tetrahedron $A B C D$, and J be the center of the exsphere touching the face $B C D$ containing three remaining faces (outside these faces). The segment $I J$ meets the circumsphere of the tetrahedron at point K. Which of two segments $I J$ and $J K$ is longer?

