AoPS Community

2019 Federal Competition For Advanced Students, P1

Federal Competition For Advanced Students, Part 1, 2019

www.artofproblemsolving.com/community/c1087271
by parmenides51

1 We consider the two sequences $\left(a_{n}\right)_{n \geq 0}$ and $\left(b_{n}\right)_{n \geq 0}$ of integers, which are given by $a_{0}=b_{0}=2$ and $a_{1}=b_{1}=14$ and for $n \geq 2$ they are defined as $a_{n}=14 a_{n-1}+a_{n-2}, b_{n}=6 b_{n-1}-b_{n-2}$. Determine whether there are infinite numbers that occur in both sequences

2 Let $A B C$ be a triangle and I its incenter. The circle passing through A, C and I intersect the line $B C$ for second time at point X. The circle passing through B, C and I intersects the line $A C$ for second time at point Y. Show that the segments $A Y$ and $B X$ have equal length.

3 Let $n \geq 2$ be an integer. Ariane and Brnice play a game on the number of the residue classes modulo n. At the beginning there is the residue class 1 on each piece of paper. It is the turn of the player whose turn it is to replace the current residue class x with either $x+1$ or by $2 x$. The two players take turns, with Ariane starting.
Ariane wins if the residue class 0 is reached during the game. Brnice wins if she can prevent that permanently.
Depending on n, determine which of the two has a winning strategy.
4 Find all pairs (a, b) of real numbers such that $a \cdot\lfloor b \cdot n\rfloor=b \cdot\lfloor a \cdot n\rfloor$ applies to all positive integers n. (For a real number $x,\lfloor x\rfloor$ denotes the largest integer that is less than or equal to x.)

