AoPS Community

Cono Sur Shortlist - geometry

geometry shortlists from Cono Sur Mathematical Olympiads, 1993, 2003, 2005, 2009, 2012, 2018, 2020 so far

www.artofproblemsolving.com/community/c1088686
by parmenides51, fprosk, Number1, Davi Medeiros, riemmanmath, Leicich, Mualpha7, mathisreal, Vloe, Leo890, Rafinha

- 1993 additional problems
1993.1 Let C_{1} and C_{2} be two concentric circles and C_{3} an outer circle to C_{1} inner to C_{2} and tangent to both. If the radius of C_{2} is equal to 1 , how much must the radius of C_{1} be worth, so that the area of is twice that of C_{3} ?
1993.2 Let $A B C D$ be a quadrilateral and let O be the point of intersection of diagonals $A C$ and $B D$. Knowing that the area of triangle $A O B$ is equal to 1 , the area of triangle $B O C$ is equal to 2 , and the area of triangle $C O D$ is equal to 4 , calculate the area of triangle $A O D$ and prove that $A B C D$ is a trapezoid.
1993.3 Justify the following construction of the bisector of an angle with an inaccessible vertex: https://cdn.artofproblemsolving.com/attachments/9/d/be4f7799d58a28cab3b4c515633b0e021c15c png $M \in a$ and $N \in b$ are taken, the 4 bisectors of the 4 internal angles formed by $M N$ are traced with a and b. Said bisectors intersect at P and Q, then $P Q$ is the bisector sought.
1993.4 Is it possible to locate in a rectangle of 5 cm by $8 \mathrm{~cm}, 51$ circles of diameter 1 cm , so that they don't overlap? Could it be possible for more than 40 circles?
1993.5 A block of houses is a square. There is a courtyard there in which a gold medal has fallen. Whoever calculates how long the side of said apple is, knowing that the distances from the medal to three consecutive corners of the apple are, respectively, $40 \mathrm{~m}, 60 \mathrm{~m}$ and 80 m , will win the medal.
1993.6 Consider in the interior of an equilateral triangle $A B C$ points D, E and F such that D belongs to segment $B E, E$ belongs to segment $C F$ and F to segment $A D$. If $A D=B E=C F$ then $D E F$ is equilateral.
1993.7 Let $A B C D$ be a convex quadrilateral, where M is the midpoint of $D C, N$ is the midpoint of $B C$, and O is the intersection of diagonals $A C$ and $B D$. Prove that O is the centroid of the triangle $A M N$ if and only if $A B C D$ is a parallelogram.
1993.8 In a triangle $A B C$, let D, E and F be the touchpoints of the inscribed circle and the sides $A B$, $B C$ and $C A$. Show that the triangles $D E F$ and $A B C$ are similar if and only if $A B C$ is equilateral.
1993.9 Prove that a line that divides a triangle into two polygons of equal area and equal perimeter passes through the center of the circle inscribed in the triangle. Prove an analogous property for a polygon that has an inscribed circle.
1993.10 Let ω be the unit circle centered at the origin of R^{2}. Determine the largest possible value for the radius of the circle inscribed to the triangle $O A P$ where P lies the circle and A is the projection of P on the axis $O X$.
1993.11 Let Γ be a semicircle with center O and diameter $A B$. D is the midpoint of arc $A B$. On the ray $O D$, we take E such that $O E=B D . B E$ intersects the semicircle at F and P is the point on $A B$ such that $F P$ is perpendicular to $A B$. Prove that $B P=\frac{1}{3} A B$.
1993.12 Given 4 lines in the plane such that there are not 2 parallel to each other or no 3 concurrent, we consider the following 8 segments: in each line we have 2 consecutive segments determined by the intersections with the other three lines.
Prove that:
a) The lengths of the 8 segments cannot be the numbers $1,2,3,4,5,6,7,8$ in some order.
b) The lengths of the 8 segments can be 8 different integers.
1993.13 Determine the real values of x such that the triangle with sides 5,8 , and x is obtuse.
1993.14 Prove that the sum of the squares of the distances from a point P to the vertices of a triangle $A B C$ is minimum when P is the centroid of the triangle.

- 2003

2003.G1 Let O be the circumcenter of the isosceles triangle $A B C(A B=A C)$. Let P be a point of the segment $A O$ and Q the symmetric of P with respect to the midpoint of $A B$. If $O Q$ cuts $A B$ at K and the circle that passes through A, K and O cuts $A C$ in L, show that $\angle A L P=\angle C L O$.
2003.G2 The circles C_{1}, C_{2} and C_{3} are externally tangent in pairs (each tangent to other two externally). Let M the common point of C_{1} and C_{2}, N the common point of C_{2} and C_{3} and P the common point of C_{3} and C_{1}. Let A be an arbitrary point of C_{1}. Line $A M$ cuts C_{2} in B, line $B N$ cuts C_{3} in C and line $C P$ cuts C_{1} in D. Prove that $A D$ is diameter of C_{1}.
2003.G3 An interior P point to a square $A B C D$ is such that $P A=a, P B=b$ and $P C=b+c$, where the numbers a, b and c satisfy the relationship $a^{2}=b^{2}+c^{2}$. Prove that the angle $B P C$ is right.
2003.G4 In a triangle $A B C$, let P be a point on its circumscribed circle (on the arc $A C$ that does not contain B). Let H, H_{1}, H_{2} and H_{3} be the orthocenters of triangles $A B C, B C P, A C P$ and $A B P$, respectively. Let $L=P B \cap A C$ and $J=H H_{2} \cap H_{1} H_{3}$. If M and N are the midpoints of $J H$ and $L P$, respectively, prove that $M N$ and $J L$ intersect at their midpoint.
2003.G5.4 In an acute triangle $A B C$, the points H, G, and M are located on $B C$ in such a way that $A H$, $A G$, and $A M$ are the height, angle bisector, and median of the triangle, respectively. It is known that $H G=G M, A B=10$, and $A C=14$. Find the area of triangle $A B C$.
2003.G6 Let L_{1} and L_{2} be two parallel lines and L_{3} a line perpendicular to L_{1} and L_{2} at H and P, respectively. Points Q and R lie on L_{1} such that $Q R=P R(Q \neq H)$. Let d be the diameter of the circle inscribed in the triangle $P Q R$. Point T lies L_{2} in the same semiplane as Q with respect to line L_{3} such that $\frac{1}{T H}=\frac{1}{d}-\frac{1}{P H}$. Let X be the intersection point of $P Q$ and $T H$. Find the locus of the points X as Q varies on L_{1}.
2003.G7.3 Let $A B C$ be an acute triangle such that $\angle B=60$. The circle with diameter $A C$ intersects the internal angle bisectors of A and C at the points M and N, respectively ($M \neq A, N \neq C$). The internal bisector of $\angle B$ intersects $M N$ and $A C$ at the points R and S, respectively. Prove that $B R \leq R S$.

- 2005
2005.G1 Construct triangle given all lenght of it altitudes.

Please, do it elementary with Euclidian geometry (no trigonometry or coordinate geometry).
2005.G2 Find the ratio between the sum of the areas of the circles and the area of the fourth circle that are shown in the figure
Each circle passes through the center of the previous one and they are internally tangent.
https://cdn.artofproblemsolving.com/attachments/d/2/29d2be270f7bcf9aee793b0b01c2ef10131e(jpg
2005.G3.4 Let $A B C$ be a isosceles triangle, with $A B=A C$. A line r that pass through the incenter I of $A B C$ touches the sides $A B$ and $A C$ at the points D and E, respectively. Let F and G be points on $B C$ such that $B F=C E$ and $C G=B D$. Show that the angle $\angle F I G$ is constant when we vary the line r.
2005.G4.2 Let $A B C$ be an acute-angled triangle and let $A N, B M$ and $C P$ the altitudes with respect to the sides $B C, C A$ and $A B$, respectively. Let R, S be the pojections of N on the sides $A B, C A$, respectively, and let Q, W be the projections of N on the altitudes $B M$ and $C P$, respectively.
(a) Show that R, Q, W, S are collinear.
(b) Show that $M P=R S-Q W$.
2005.G5 Let O be the circumcenter of an acute triangle $A B C$ and A_{1} a point of the minor arc $B C$ of the circle $A B C$. Let A_{2} and A_{3} be points on sides $A B$ and $A C$ respectively such that $\angle B A_{1} A_{2}=$ $\angle O A C$ and $\angle C A_{1} A_{3}=\angle O A B$. Points B_{2}, B_{3}, C_{2} and C_{3} are similarly constructed, with B_{2} in $B C, B_{3}$ in $A B, C_{2}$ in $A C$ and C_{3} in $B C$. Prove that lines $A_{2} A_{3}, B_{2} B_{3}$ and $C_{2} C_{3}$ are concurrent.
2005.G6 Let $A M$ and $A N$ be the tangents to a circle Γ drawn from a point A (M and N lie on the circle). A line passing through A cuts Γ at B and C, with B between A and C such that $A B: B C=2: 3$. If P is the intersection point of $A B$ and $M N$, calculate the ratio $A P: C P$.

- 2009
2009.G1.6 Sebastian has a certain number of rectangles with areas that sum up to 3 and with side lengths all less than or equal to 1 . Demonstrate that with each of these rectangles it is possible to cover a square with side 1 in such a way that the sides of the rectangles are parallel to the sides of the square.

Note: The rectangles can overlap and they can protrude over the sides of the square.
2009.G2 The trapezoid $A B C D$, of bases $A B$ and $C D$, is inscribed in a circumference Γ. Let X a variable point of the arc $A B$ of Γ that does not contain C or D. We denote Y to the point of intersection of $A B$ and $D X$, and let Z be the point of the segment $C X$ such that $\frac{X Z}{X C}=\frac{A Y}{A B}$. Prove that the measure of $\angle A Z X$ does not depend on the choice of X.
2009.G3 We have a convex polygon P in the plane and two points S, T in the boundary of P, dividing the perimeter in a proportion 1:2. Three distinct points in the boundary, denoted by A, B, C start to move simultaneously along the boundary, in the same direction and with the same speed. Prove that there will be a moment in which one of the segments $A B, B C, C A$ will have a length smaller or equal than $S T$.
2009.G4 Let $A A_{1}$ and $C C_{1}$ be altitudes of an acute triangle $A B C$. Let I and J be the incenters of the triangles $A A_{1} C$ and $A C_{1} C$ respectively. The $C_{1} J$ and $A_{1} I$ lines cut into T. Prove that lines $A T$ and $T C$ are perpendicular.
2009.G5.3 Let A, B, and C be three points such that B is the midpoint of segment $A C$ and let P be a point such that $<P B C=60$. Equilateral triangle $P C Q$ is constructed such that B and Q are on different half=planes with respect to $P C$, and the equilateral triangle $A P R$ is constructed in such a way that B and R are in the same half-plane with respect to $A P$. Let X be the point of intersection of the lines $B Q$ and $P C$, and let Y be the point of intersection of the lines $B R$ and $A P$. Prove that $X Y$ and $A C$ are parallel.

- 2012
2012.G1 Let $A B C D$ be a cyclic quadrilateral. Let P be the intersection of $B C$ and $A D$. Line $A C$ intersects the circumcircle of triangle $B D P$ in points S and T, with S between A and C. Line $B D$ intersects the circumcircle of triangle $A C P$ in points U and V, with U between B and D. Prove that $P S=P T=P U=P V$.

AoPS Community

Cono Sur Shortlist - geometry

2012.G2 Let $A B C$ be a triangle, and M and N variable points on $A B$ and $A C$ respectively, such that both M and N do not lie on the vertices, and also, $A M \times M B=A N \times N C$. Prove that the perpendicular bisector of $M N$ passes through a fixed point.
2012.G3 Let $A B C$ be a triangle, and M, N, and P be the midpoints of $A B, B C$, and $C A$ respectively, such that $M B N P$ is a parallelogram. Let R and S be the points in which the line $M N$ intersects the circumcircle of $A B C$. Prove that $A C$ is tangent to the circumcircle of triangle $R P S$.
2012.G4.2 2. In a square $A B C D$, let P be a point in the side $C D$, different from C and D. In the triangle $A B P$, the altitudes $A Q$ and $B R$ are drawn, and let S be the intersection point of lines $C Q$ and $D R$. Show that $\angle A S B=90$.
2012.G5 Let $A B C$ be an acute triangle, and let H_{A}, H_{B}, and H_{C} be the feet of the altitudes relative to vertices A, B, and C, respectively. Define I_{A}, I_{B}, and I_{C} as the incenters of triangles $A H_{B} H_{C}$, $B H_{C} H_{A}$, and $C H_{A} H_{B}$, respectively. Let T_{A}, T_{B}, and T_{C} be the intersection of the incircle of triangle $A B C$ with $B C, C A$, and $A B$, respectively. Prove that the triangles $I_{A} I_{B} I_{C}$ and $T_{A} T_{B} T_{C}$ are congruent.
2012.G6.6 6. Consider a triangle $A B C$ with $1<\frac{A B}{A C}<\frac{3}{2}$. Let M and N, respectively, be variable points of the sides $A B$ and $A C$, different from A, such that $\frac{M B}{A C}-\frac{N C}{A B}=1$. Show that circumcircle of triangle $A M N$ pass through a fixed point different from A.

- 2018
2018.G1.1 Let $A B C D$ be a convex quadrilateral, where R and S are points in $D C$ and $A B$, respectively, such that $A D=R C$ and $B C=S A$. Let P, Q and M be the midpoints of $R D, B S$ and $C A$, respectively. If $\angle M P C+\angle M Q A=90$, prove that $A B C D$ is cyclic.
2018.G2.5 Let $A B C$ be an acute-angled triangle with $\angle B A C=60^{\circ}$ and with incenter I and circumcenter O. Let H be the point diametrically opposite(antipode) to O in the circumcircle of $\triangle B O C$. Prove that $I H=B I+I C$.
2018.G3 Consider the pentagon $A B C D E$ such that $A B=A E=x, A C=A D=y, \angle B A E=90^{\circ}$ and $\angle A C B=\angle A D E=135^{\circ}$. It is known that C and D are inside the triangle $B A E$. Determine the length of $C D$ in terms of x and y.
2018.G4 Let $A B C$ be an acute triangle with $A C>A B$. Let Γ be the circle circumscribed to the triangle $A B C$ and D the midpoint of the smaller arc $B C$ of this circle. Let I be the incenter of $A B C$ and let E and F be points on sides $A B$ and $A C$, respectively, such that $A E=A F$ and I lies on the segment $E F$. Let P be the second intersection point of the circumcircle of the triangle $A E F$ with Γ with $P \neq A$. Let G and H be the intersection points of the lines $P E$ and $P F$ with Γ different from P, respectively. Let J and K be the intersection points of lines $D G$ and $D H$ with lines AB and $A C$, respectively. Show that the line $J K$ passes through the midpoint of $B C$.
2018.G5 We say that a polygon P is inscribed in another polygon Q when all the vertices of P belong to the perimeter of Q. We also say in this case that Q is circumscribed to P. Given a triangle T, let ℓ be the largest side of a square inscribed in T and L is the shortest side of a square circumscribed to T. Find the smallest possible value of the ratio L / ℓ.
2018.G6 Let $A B C$ be an acute triangle with circumcenter O and orthocenter H. The circle with center X_{A} passes through the points A and H and is tangent to the circumcircle of the triangle $A B C$. Similarly, define the points X_{B} and X_{C}. Let O_{A}, O_{B} and O_{C} be the reflections of O with respect to sides $B C, C A$ and $A B$, respectively. Prove that the lines $O_{A} X_{A}, O_{B} X_{B}$ and $O_{C} X_{C}$ are concurrent.
- 2020
2020.G1.4 Let $A B C$ be an acute scalene triangle. D and E are variable points in the half-lines $A B$ and $A C$ (with origin at A) such that the symmetric of A over $D E$ lies on $B C$. Let P be the intersection of the circles with diameter $A D$ and $A E$. Find the locus of P when varying the line segment $D E$.
2020.G2 Let $A B C$ be a triangle whose inscribed circle is ω. Let r_{1} be the line parallel to $B C$ and tangent to ω, with $r_{1} \neq B C$ and let r_{2} be the line parallel to $A B$ and tangent to ω with $r_{2} \neq A B$. Suppose that the intersection point of r_{1} and r_{2} lies on the circumscribed circle of triangle $A B C$. Prove that the sidelengths of triangle $A B C$ form an arithmetic progression.
2020.63.3 Let $A B C$ be an acute triangle such that $A C<B C$ and ω its circumcircle. M is the midpoint of $B C$. Points F and E are chosen in $A B$ and $B C$, respectively, such that $A C=C F$ and $E B=$ $E F$. The line $A M$ intersects ω in $D \neq A$. The line $D E$ intersects the line $F M$ in G. Prove that G lies on ω.
2020.G4 Let $A B C$ be a triangle with circumcircle ω. The bisector of $\angle B A C$ intersects ω at point A_{1}. Let A_{2} be a point on the segment $A A_{1}, C A_{2}$ cuts $A B$ and ω at points C_{1} and C_{2}, respectively. Similarly, $B A_{2}$ cuts $A C$ and ω at points B_{1} and B_{2}, respectively. Let M be the intersection point of $B_{1} C_{2}$ and $B_{2} C_{1}$. Prove that $M A_{2}$ passes the midpoint of $B C$. proposed by Jhefferson Lopez, Perú
2020.G5 posted as 2021 p6
- 2021
2021.G1.2 Let $A B C$ be a triangle and I its incenter. The lines $B I$ and $C I$ intersect the circumcircle of $A B C$ again at M and N, respectively. Let C_{1} and C_{2} be the circumferences of diameters $N I$ and $M I$, respectively. The circle C_{1} intersects $A B$ at P and Q, and the circle C_{2} intersects $A C$ at R and S. Show that P, Q, R and S are concyclic.
2021.G2 Let $A B C$ be an acute triangle. Define A_{1} the midpoint of the largest arc $B C$ of the circumcircle of $A B C$. Let A_{2} and A_{3} be the feet of the perpendiculars from A_{1} on the lines $A B$ and $A C$, respectively. Define $B_{1}, B_{2}, B_{3}, C_{1}, C_{2}$, and C_{3} analogously. Show that the lines $A_{2} A_{3}, B_{2} B_{3}$, $C_{2} C_{3}$ are concurrent.
2021.G3 Let $A B C D$ be a parallelogram with vertices in order clockwise and let E be the intersection of its diagonals. The circle of diameter $D E$ intersects the segment $A D$ at L and $E C$ at H. The circumscribed circle of $L E B$ intersects the segment $B C$ at O. Prove that the lines $H D, L E$ and $B C$ are concurrent if and only if $E O=E C$.
2021.G4 Let $A B C$ be a triangle and Γ the A-exscribed circle whose center is J. Let D and E be the touchpoints of Γ with the lines $A B$ and $A C$, respectively. Let S be the area of the quadrilateral $A D J E$, Find the maximum value that $\frac{S}{A J^{2}}$ has and when equality holds.
2021.G5 Let $\triangle A B C$ be a triangle with circumcenter O, orthocenter H, and circumcircle ω. $A A^{\prime}, B B^{\prime}$ and $C C^{\prime}$ are altitudes of $\triangle A B C$ with A^{\prime} in $B C, B^{\prime}$ in $A C$ and C^{\prime} in $A B . P$ is a point on the segment $A A^{\prime}$. The perpenicular line to $B^{\prime} C^{\prime}$ from P intersects $B C$ at K. $A A^{\prime}$ intersects ω at $M \neq A$. The lines $M K$ and $A O$ intersect at Q. Prove that $\angle C B Q=\angle P B A$.
2021.G6.6 Let $A B C$ be a scalene triangle with circle Γ. Let P, Q, R, S distinct points on the $B C$ side, in that order, such that $\angle B A P=\angle C A S$ and $\angle B A Q=\angle C A R$. Let U, V, W, Z be the intersections, distinct from A, of the $A P, A Q, A R$ and $A S$ with Γ, respectively. Let $X=U Q \cap S W, Y=P V \cap Z R$, $T=U R \cap V S$ and $K=P W \cap Z Q$. Suppose that the points M and N are well determined, such that $M=K X \cap T Y$ and $N=T X \cap K Y$. Show that M, N, A are collinear.
2021.G7 Given an triangle $A B C$ isosceles at the vertex A, let P and Q be the touchpoints with $A B$ and $A C$, respectively with the circle T, which is tangent to both and is internally tangent to the circumcircle of $A B C$. Let R and S be the points of the circumscribed circle of $A B C$ such that $A P=A R=A S$. Prove that $R S$ is tangent to T.

