AoPS Community

Moldova Team Selection Test 2020

www.artofproblemsolving.com/community/c1089134
by augustin_p, kirillnaval, rmtf1111

- Day 1

1 All members of geometrical progression $\left(b_{n}\right)_{n \geq 1}$ are members of some arithmetical progression. It is known that b_{1} is an integer. Prove that all members of this geometrical progression are integers. (progression is infinite)

2 Show that for any positive real numbers a, b, c the following inequality takes place $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+$ $\frac{a+b+c}{\sqrt{a^{2}+b^{2}+c^{2}}} \geq 3+\sqrt{3}$

3 Let $n,(n \geq 3)$ be a positive integer and the set $A=1,2, \ldots, n$. All the elements of A are randomly arranged in a sequence $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. The pair $\left(a_{i}, a_{j}\right)$ forms an inversion if $1 \leq i \leq j \leq n$ and $a_{i}>a_{j}$. In how many different ways all the elements of the set A can be arranged in a sequence that contains exactly 3 inversions?

4 Let $\triangle A B C$ be an acute triangle and H its orthocenter. B_{1} and C_{1} are the feet of heights from B and C, M is the midpoint of $A H$. Point K is on the segment $B_{1} C_{1}$, but isn't on line $A H$. Line $A K$ intersects the lines $M B_{1}$ and $M C_{1}$ in E and F, the lines $B E$ and $C F$ intersect at N. Prove that K is the orthocenter of $\triangle N B C$.

- \quad Day 2

5 Let n be a natural number. Find all solutions x of the system of equations

$$
\left\{\begin{array}{c}
\sin x+\cos x=\frac{\sqrt{n}}{2} \\
\operatorname{tg} \frac{x}{2}=\frac{\sqrt{n}-2}{3}
\end{array}\right.
$$

On interval $\left[0, \frac{\pi}{4}\right)$.
6 Let $n,(n \geq 3)$ be a positive integer and the polynomial $f(x)=(1+x) \cdot(1+2 x) \cdot(1+3 x) \cdot \ldots \cdot(1+n x)$ $=a_{0}+a_{1} \cdot x+a_{2} \cdot x^{2}+a_{3} \cdot x^{3}+\ldots+a_{n} \cdot x^{n}$. Show that the number a_{3} divides the number $k=C_{n+1}^{2} \cdot\left(2 \cdot C_{n}^{2} \cdot C_{n+1}^{2}-3 \cdot a_{2}\right)$.

7 Show that for any positive real numbers a, b, c the following inequality takes place

$$
\frac{a}{\sqrt{7 a^{2}+b^{2}+c^{2}}}+\frac{b}{\sqrt{a^{2}+7 b^{2}+c^{2}}}+\frac{c}{\sqrt{a^{2}+b^{2}+7 c^{2}}} \leq 1 .
$$

8 In $\triangle A B C$ the angles $A B C$ and $A C B$ are acute. Let M be the midpoint of $A B$. Point D is on the half-line ($C B$ such that $B \in(C D)$ and $\angle D A B=\angle B C M$. Perpendicular from B to line $C D$ intersects the line bisector of $A B$ in E. Prove that $D E$ and $A C$ are perpendicular.

- Day 3

9 Let $\triangle A B C$ be an acute triangle and Ω its circumscribed circle, with diameter $A P$. Points E and F are the orthogonal projections from B on $A C$ and $A P$, points M and N are the midpoints of segments $E F$ and $C P$. Prove that $\angle B M N=90$.

10 Let n be a positive integer. Positive numbers a, b, c satisfy $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$. Find the greatest possible value of

$$
E(a, b, c)=\frac{a^{n}}{a^{2 n+1}+b^{2 n} \cdot c+b \cdot c^{2 n}}+\frac{b^{n}}{b^{2 n+1}+c^{2 n} \cdot a+c \cdot a^{2 n}}+\frac{c^{n}}{c^{2 n+1}+a^{2 n} \cdot b+a \cdot b^{2 n}}
$$

11 Find all functions $f:[-1,1] \rightarrow \mathbb{R}$, which satisfy

$$
f(\sin x)+f(\cos x)=2020
$$

for any real number x.
12 In a chess tournament each player played one match with every other player. It is known that all players have different scores. The player who is on the last place got k points. What is the smallest number of wins that the first placed player got? (For the win 1 point is given, for loss 0 and for a draw both players get 0,5 points.)

