AoPS Community

Brazil L2 Finals (OBM) - geometry

geometry problems from 3rd / final round from Brazilian National Math Olympiads, level 2

www.artofproblemsolving.com/community/c1089421
by Johann Peter Dirichlet, parmenides51, Fermat -Euler, cyshine, ffao, makar, Math5000, mathisreal, Mathematics 73 , Zelderis, Vloe, hydo2332
1998.2 Let $A B C$ be a triangle. D is the midpoint of $A B, E$ is a point on the side $B C$ such that $B E=$ $2 E C$ and $\angle A D C=\angle B A E$. Find $\angle B A C$.
1999.1 Let $A B C D E$ be a regular pentagon. The star $A C E B D$ has area 1. $A C$ and $B E$ meet at P, while $B D$ and $C E$ meet at Q. Find the area of $A P Q D$.
2000.3 A rectangular piece of paper has top edge $A D$. A line L from A to the bottom edge makes an angle x with the line $A D$. We want to trisect x. We take B and C on the vertical ege through A such that $A B=B C$. We then fold the paper so that C goes to a point C^{\prime} on the line L and A goes to a point A^{\prime} on the horizontal line through B. The fold takes B to B^{\prime}. Show that $A A^{\prime}$ and $A B^{\prime}$ are the required trisectors.
2001.1 A sheet of rectangular $A B C D$ paper, of area 1, is folded along its diagonal $A C$ and then unfolded, then it is bent so that vertex A coincides with vertex C and then unfolded, leaving the crease $M N$, as shown below.
a) Show that the quadrilateral $A M C N$ is a rhombus.
b) If the diagonal $A C$ is twice the width $A D$, what is the area of the rhombus $A M C N$? https://2.bp.blogspot.com/-TeQOQKYGzOQ/Xp91QcaLbsI/AAAAAAAAL2E/JLXwEIPSr4U79tATcYzmcJjK5 RqACK4BGAYYCw/s400/2001\%2Baomb\%2Bl2.png
2001.3 Given a positive integer h, show that there are a finite number of triangles with integer sides a, b, c and altitude relative to side c equal to h.
2001.6 An altitude of a convex quadrilateral is a line through the midpoint of a side perpendicular to the opposite side. Show that the four altitudes are concurrent iff the quadrilateral is cyclic.
2002.1 Let $X Y Z$ be a right triangle of area $1 \mathrm{~m}^{2}$. Consider the triangle $X^{\prime} Y^{\prime} Z^{\prime}$ such that X^{\prime} is the symmetric of X wrt side $Y Z, Y^{\prime}$ is the symmetric of Y wrt side $X Z$ and Z^{\prime} is the symmetric of Z wrt side $X Y$. Calculate the area of the triangle $X^{\prime} Y^{\prime} Z^{\prime}$.
2002.5 Let $A B C$ be a triangle inscribed in a circle of center O and P be a point on the arc $A B$, that does not contain C. The perpendicular drawn fom P on line $B O$ intersects $A B$ at S and $B C$ at T. The perpendicular drawn from P on line $A O$ intersects $A B$ at Q and $A C$ at R. Prove that:
a) $P Q S$ is an isosceles triangle
b) $P Q^{2}=Q R=S T$

AoPS Community

Brazil L2 Finals (OBM) - geometry

2003.3 The triangle $A B C$ is inscribed in the circle S and $A B<A C$. The line containing A and is perpendicular to $B C$ meets S in $P(P \neq A)$. Point X is on the segment $A C$ and the line $B X$ intersects S in $Q(Q \neq B)$. Show that $B X=C X$ if, and only if, $P Q$ is a diameter of S.
2003.5 Given a circle and a point A inside the circle, but not at its center. Find points B, C, D on the circle which maximise the area of the quadrilateral $A B C D$.
2004.2 In the figure, $A B C$ and $D A E$ are isosceles triangles ($A B=A C=A D=D E$) and the angles $B A C$ and $A D E$ have measures 36°.
a) Using geometric properties, calculate the measure of angle $\angle E D C$.
b) Knowing that $B C=2$, calculate the length of segment $D C$.
c) Calculate the length of segment $A C$.
https://1.bp.blogspot.com/-mv43_pSjBxE/XqBMTfN1RKI/AAAAAAAAL2c/5IL1MOn7A2IQleu9T4yNmIY_ 1DtrxzsJgCK4BGAYYCw/s400/2004\%2Bobm\%2B12.png
2004.5 Let D be the midpoint of the hypotenuse $A B$ of a right triangle $A B C$. Let O_{1} and O_{2} be the circumcenters of the $A D C$ and $D B C$ triangles, respectively.
a) Prove that $\angle O_{1} D O_{2}$ is right.
b) Prove that $A B$ is tangent to the circle of diameter $O_{1} O_{2}$.
2005.2 In the right triangle $A B C$, the perpendicular sides $A B$ and $B C$ have lengths 3 cm and 4 cm , respectively. Let M be the midpoint of the side $A C$ and let D be a point, distinct from A, such that $B M=M D$ and $A B=B D$.
a) Prove that $B M$ is perpendicular to $A D$.
b) Calculate the area of the quadrilateral $A B D C$.
2005.6 The angle B of a triangle $A B C$ is 120°. Let M be a point on the side $A C$ and K a point on the extension of the side $A B$, such that $B M$ is the internal bisector of the angle $\angle A B C$ and $C K$ is the external bisector corresponding to the angle $\angle A C B$. The segment $M K$ intersects $B C$ at point P. Prove that $\angle A P M=30^{\circ}$.
2006.2 Among the 5 -sided polygons, as many vertices as possible collinear, that is, belonging to a single line, is three, as shown below. What is the largest number of collinear vertices a 12 -sided polygon can have? https://cdn.artofproblemsolving.com/attachments/1/1/53d419efa4fc4110730a857ae6988fc923eb png
Attention: In addition to drawing a 12-sided polygon with the maximum number of vertices collinear , remember to show that there is no other 12 -sided polygon with more vertices collinear than this one.
2006.5 Let $A B C$ be an acute triangle with orthocenter H. Let M, N and R be the midpoints of $A B$, $B C$ an $A H$, respectively. If $\angle A B C=70^{\circ}$, compute $\angle M N R$.

AoPS Community

Brazil L2 Finals (OBM) - geometry

2007.1 Let $A B C$ be a triangle with circumcenter O. Let P be the intersection of straight lines $B O$ and $A C$ and ω be the circumcircle of triangle $A O P$. Suppose that $B O=A P$ and that the measure of the arc $O P$ in ω, that does not contain A, is 40°. Determine the measure of the angle $\angle O B C$. https://3.bp.blogspot.com/-h3UVt-yrJ6A/XqBItXzT70I/AAAAAAAAL2Q/7LVv0gmQWbo1_3rn906fTn6wo s1600/2007\%2Bomb\%2Bl2.png
2007.5 $\triangle A B C$ is a right isosceles triangle. Choose points K and M from the hypotenuse $A B$, such that $K \in A M$ and $\angle K C M=45^{\circ}$. Prove that $(A K)^{2}+(M B)^{2}=(K M)^{2}$

Thanks for any help.
2008.3 Let P be a convex pentagon with all sides equal. Prove that if two of the angles of P add to 180°, then it is possible to cover the plane with P, without overlaps.
2008.5 Let $A B C$ be an acutangle triangle and O, H its circumcenter, orthocenter, respectively. If $\frac{A B}{\sqrt{2}}=$ $B H=O B$, calculate the angles of the triangle $A B C$.
2009.2 Let A be one of the two points of intersection of two circles with centers X, Y respectively. The tangents at A to the two circles meet the circles again at B, C. Let a point P be located so that $P X A Y$ is a parallelogram. Show that P is also the circumcenter of triangle $A B C$.
2009.5 An ant walks on the plane as follows: initially, it walks 1 cm in any direction. After, at each step, it changes the trajectory direction by 60° left or right and walks 1 cm in that direction. It is possible that it returns to the point from which it started in
(a) 2008 steps?
(b) 2009 steps?
https://cdn.artofproblemsolving.com/attachments/8/b/d4c0d03c67432c4e790b465a74a876b93824 png
2009.6 Let $A B C$ be a triangle and O its circumcenter. Lines $A B$ and $A C$ meet the circumcircle of $O B C$ again in $B_{1} \neq B$ and $C_{1} \neq C$, respectively, lines $B A$ and $B C$ meet the circumcircle of $O A C$ again in $A_{2} \neq A$ and $C_{2} \neq C$, respectively, and lines $C A$ and $C B$ meet the circumcircle of $O A B$ in $A_{3} \neq A$ and $B_{3} \neq B$, respectively. Prove that lines $A_{2} A_{3}, B_{1} B_{3}$ and $C_{1} C_{2}$ have a common point.
2010.2 Let $A B C D$ be a parallelogram and ω be the circumcircle of the triangle $A B D$. Let E, F be the intersections of ω with lines $B C, C D$ respectively. Prove that the circumcenter of the triangle $C E F$ lies on ω.
2010.5 The diagonals of an cyclic quadrilateral $A B C D$ intersect at O. The circumcircles of triangle $A O B$ and $C O D$ intersect lines $B C$ and $A D$, for the second time, at points M, N, P and Q. Prove that the $M N P Q$ quadrilateral is inscribed in a circle of center O.

AoPS Community

Brazil L2 Finals (OBM) - geometry

2010.6 The three sides and the area of a triangle are integers. What is the smallest value of the area of this triangle?
2011.2 Let $A B C D$ be a convex quadrilateral such that $A D=D C, A C=A B$ and $\angle A D C=\angle C A B$. If M and N are midpoints of the $A D$ and $A B$ sides, prove that the $M N C$ triangle is isosceles.
2011.5 Inside a square of side 16 are placed 1000 points. Show that it is possible to put a equilateral triangle of side $2 \sqrt{3}$ in the plane so that it covers at least 16 of these points.
2012.3 Let be a triangle $A B C$, the midpoint of the $A C$ and N side, and the midpoint of the $A B$ side. Let r and s reflect the straight lines $B M$ and $C N$ on the straight $B C$, respectively. Also define D and E as the intersection of the lines r and s and the line $M N$, respectively. Let X and Y be the intersection points between the circumcircles of the triangles $B D M$ and $C E N, Z$ the intersection of the lines $B E$ and $C D$ and W the intersection between the lines r and s. Prove that $X Y, W Z$, and $B C$ are concurrents.
2012.4 The figure below shows a regular $A B C D E$ pentagon inscribed in an equilateral triangle $M N P$. Determine the measure of the angle $C M D$. http://4.bp.blogspot.com/-LLT7hB7QwiA/Xp9fXOsihLI/AAAAAAAAL14/51PsjXeKfYwIr5DyRAKRyOTbrX zx1xHQCK4BGAYYCw/s200/2012\%2Bobm\%2Bl2.png
2013.3 Let $A B C$ a triangle. Let D be a point on the circumcircle of this triangle and let E, F be the feet of the perpendiculars from A on $D B, D C$, respectively. Finally, let N be the midpoint of $E F$. Let $M \neq N$ be the midpoint of the side $B C$. Prove that the lines $N A$ and $N M$ are perpendicular.
2013.5 Let $A B C$ be a scalene triangle and $A M$ is the median relative to side $B C$. The diameter circumference $A M$ intersects for the second time the side $A B$ and $A C$ at points P and Q, respectively, both different from A. Assuming that $P Q$ is parallel to $B C$, determine the angle measurement ¡BAC.

Any solution without trigonometry?
2013.6 Consider a positive integer n and two points A and B in a plane. Starting from point A, n rays and starting from point B, n rays are drawn so that all of them are on the same half-plane defined by the line $A B$ and that the angles formed by the $2 n$ rays with the segment $A B$ are all acute. Define circles passing through points A, B and each meeting point between the rays. What is the smallest number of distinct circles that can be defined by this construction?
2014.2 Let $A B$ be a diameter of the circunference ω, let C and D be point in this circunference, such that $C D$ is perpedicular to $A B$. Let E be the point of intersection of the segment $C D$ and the segment $A B$, and a point P that is in the segment $C D, P$ is different of E. The lines $A P$ and $B P$ intersects ω, in F and G respectively. If O is the circumcenter of triangle $E F G$, show that the area of triangle $O C D$ is invariant, independent of the position of the point P.
2014.4 Let $A B C D$ be a square and O is your center. Let E, F, G, H points in the segments $A B, B C, C D, A D$ respectively, such that $A E=B F=C G=D H$. The line $O A$ intersects the segment $E H$ in the point $X, O B$ intersects $E F$ in the point $Y, O C$ intersects $F G$ in the point Z and $O D$ intersects $H G$ in the point W. If the $(E F G H)=1$. Find: $(A B C D) \times(X Y Z W)$
Note (P) denote the area of the polygon P.
2015.2 Let $A B C D$ be a convex quadrilateral. Let E be the intersection of line $A B$ with the line $C D$, and F is the intersection of line $B C$ with the line $A D$.
Let P and Q be the foots of the perpendicular of E to the lines $A D$ and $B C$ respectively, and let R and S be the foots of the perpendicular of F to the lines $A B$ and $C D$, respectively. The point T is the intersection of the line $E R$ with the line $F S$.
a) Show that, there exists a circle that passes in the points E, F, P, Q, R and S.
b)Show that, the circumcircle of triangle $R S T$ is tangent with the circumcircle of triangle $Q R B$.
2015.3 Let $A B C$ be a triangle and n a positive integer. Consider on the side $B C$ the points $A_{1}, A_{2}, \ldots, A_{2^{n}-1}$ that divide the side into 2^{n} equal parts, that is, $B A_{1}=A_{1} A_{2}=\ldots=A_{2^{n}-2} A_{2^{n}-1}=A_{2^{n}-1} C$. Set the points $B_{1}, B_{2}, \ldots, B_{2^{n}-1}$ and $C_{1}, C_{2}, \ldots, C_{2^{n}-1}$ on the sides $C A$ and $A B$, respectively, analogously. Draw the line segments $A A_{1}, A A_{2}, \ldots, A A_{2^{n}-1}, B B_{1}, B B_{2}, \ldots, B B_{2^{n}-1}$ and $C C_{1}, C C_{2}, \ldots, C C_{2^{n}-1}$. Find, in terms of n, the number of regions into which the triangle is divided.
2015.6 Let $A B C$ a scalene triangle and $A D, B E, C F$ your angle bisectors, with D in the segment $B C, E$ in the segment $A C$ and F in the segment $A B$. If $\angle A F E=\angle A D C$.
Determine $\angle B C A$.
2016.2 The inner bisections of the $\angle A B C$ and $\angle A C B$ angles of the $A B C$ triangle are at I. The $B I$ parallel line that runs through the point A finds the $C I$ line at the point D. The $C I$ parallel line for A finds the $B I$ line at the point E. The lines $B D$ and $C E$ are at the point F. Show that F, A, and I are collinear if and only if $A B=A C$.
2016.4 Consider a scalene triangle $A B C$ with $A B<A C<B C$. The $A B$ side mediator cuts the B side at the K point and the $A C$ prolongation at the U. point. $A C$ side cuts $B C$ side at O point and $A B$ side extension at G point. Prove that the $G O K U$ quad is cyclic, meaning its four vertices are at same circumference
2017.1 The points X, Y, Z are marked on the sides $A B, B C, A C$ of the triangle $A B C$, respectively. Points $A^{\prime}, B^{\prime}, C^{\prime}$ are on the $X Z, X Y, Y Z$ sides of the triangle $X Y Z$, respectively, so that $\frac{A B}{A^{\prime} B^{\prime}}=$ $\frac{A B}{A^{\prime} B^{\prime}}=\frac{B C}{B^{\prime} C^{\prime}}=2$ and $A B B^{\prime} A^{\prime}, B C C^{\prime} B^{\prime}, A C C^{\prime} A^{\prime}$ are trapezoids in which the sides of the triangle $A B C$ are bases.
a) Determine the ratio between the area of the trapezium $A B B^{\prime} A^{\prime}$ and the area of the triangle $A^{\prime} B^{\prime} X$.
b) Determine the ratio between the area of the triangle $X Y Z$ and the area of the triangle $A B C$.
2017.5 Let $A B C$ be a triangle with $A B \neq A C$, and let K be the incenter. Let P and Q be the other points of the intersections of the circumcircle of triangle $B C K$ with the lines $A B$ and $A C$, respectively. Let D be intersection of $A K$ and $B C$.
a) Show that P, Q, D are collinear,
b) Let T, diiferent from P, be the intersection of the circumcircles of triangles $P Q B$ and $Q D C$. Prove that T lies on the circumcircle of the triangle $A B C$.
[full wording with source: 2017 Brazil MO level 2 p5-OBM - above was only the 1st part]
2018.3 Let $A B C$ be an acute-angled triangle with circumcenter O and orthocenter H. The circle with center X_{a} passes in the points A and H and is tangent to the circumcircle of $A B C$. Define X_{b}, X_{c} analogously, let O_{a}, O_{b}, O_{c} the symmetric of O to the sides $B C, A C$ and $A B$, respectively. Prove that the lines $O_{a} X_{a}, O_{b} X_{b}, O_{c} X_{c}$ are concurrents.
2018.4 a) In $X Y Z$ triangle, the incircle touches $X Y$ and $X Z$ in T and W, respectively. Prove that:

$$
X T=X W=\frac{X Y+X Z-Y Z}{2}
$$

Let $A B C$ a triangle and D the foot of the perpendicular of A in $B C$. Let I, J be the incenters of $A B D$ and $A C D$, respectively. The incircles of $A B D$ and $A C D$ touch $A D$ in M and N, respectively. Let P be where the incircle of $A B C$ touches $A B$. The circle with centre A and radius $A P$ intersects $A D$ in K.
b) Show that $\triangle I M K \cong \triangle K N J$.
c) Show that $I D J K$ is cyclic.
2019.3 Let $A B C$ be an acutangle triangle inscribed in a circle Γ of center O. Let D be the height of the vertex A. Let E and F be points over Γ such that $A E=A D=A F$. Let P and Q be the intersection points of the $E F$ with sides $A B$ and $A C$ respectively. Let X be the second intersection point of Γ with the circle circumscribed to the triangle $A P Q$. Show that the lines $X D$ and $A O$ meet at a point above sobre
2019.4 Let $A B C$ be an acutangle triangle and D any point on the $B C$ side. Let E be the symmetrical of D in $A C$ and F is the symmetrical D relative to $A B$. A straight $E D$ intersects straight $A B$ at G, while straight $F D$ intersects the line $A C$ in H. Prove that the points A, E, F, G and H are on the same circumference.
2019.6 On the Cartesian plane, all points with both integer coordinates are painted blue. Two blue points are said to be mutually visible if the line segment that connects them has no other blue points. Prove that there is a set of 2019 blue points that are mutually visible two by two.

No plano cartesiano, todos os pontos com ambas coordenadas inteiras são pintados de azul. Dois pontos azuis são ditos mutuamente visíveis se o segmento de reta que os conecta não

AoPS Community

Brazil L2 Finals (OBM) - geometry

possui outros pontos azuis. Prove que existe um conjunto de 2019 pontos azuis que são mutuamente visíveis dois a dois.

PS. There is a comment about problem being wrong / incorrect here (https://artof problemsolving. com/community/c6h1957974p14780265)
2020.1 Let $A B C$ be an acute triangle and $A D$ a height. The angle bissector of $\angle D A C$ intersects $D C$ at E. Let F be a point on $A E$ such that $B F$ is perpendicular to $A E$. If $\angle B A E=45$, find $\angle B F C$.
2020.5 Let $A B C$ be a triangle and M the midpoint of $A B$. Let circumcircles of triangles $C M O$ and $A B C$ intersect at K where O is the circumcenter of $A B C$. Let P be the intersection of lines $O M$ and $C K$. Prove that $\angle P A K=\angle M C B$.
2021.3 Let $A B C$ be a scalene triangle and ω is your incircle. The sides $B C, C A$ and $A B$ are tangents to ω in X, Y, Z respectively. Let M be the midpoint of $B C$ and D is the intersection point of $B C$ with the angle bisector of $\angle B A C$. Prove that $\angle B A X=\angle M A C$ if and only if $Y Z$ passes by the midpoint of $A D$.
2021.5 Let $A B C$ be an acute-angled triangle. Let A_{1} be the midpoint of the $\operatorname{arc} B C$ which contain the point A. Let A_{2} and A_{3} be the foot(s) of the perpendicular(s) of the point A_{1} to the lines $A B$ and $A C$, respectively. Define $B_{2}, B_{3}, C_{2}, C_{3}$ analogously.
a) Prove that the line $A_{2} A_{3}$ cuts $B C$ in the midpoint.
b) Prove that the lines $A_{2} A_{3}, B_{2} B_{3}$ and $C_{2} C_{3}$ are concurrents.
2021.7 Let $A B C$ be a triangle with $\angle A B C=90^{\circ}$. The square $B D E F$ is inscribed in $\triangle A B C$, such that D, E, F are in the sides $A B, C A, B C$ respectively. The inradius of $\triangle E F C$ and $\triangle E D A$ are c and b, respectively. Four circles $\omega_{1}, \omega_{2}, \omega_{3}, \omega_{4}$ are drawn inside the square $B D E F$, such that the radius of ω_{1} and ω_{3} are both equal to b and the radius of ω_{2} and ω_{4} are both equal to a. The circle ω_{1} is tangent to $E D$, the circle ω_{3} is tangent to $B F, \omega_{2}$ is tangent to $E F$ and ω_{4} is tangent to $B D$, each one of these circles are tangent to the two closest circles and the circles ω_{1} and ω_{3} are tangents. Determine the ratio $\frac{c}{a}$.

