Art of Problem Solving

AoPS Community

Czech-Polish-Slovak Junior Match 2013

www.artofproblemsolving.com/community/c1093554
by parmenides51

- Individual

1 Determine all pairs (x, y) of integers for which satisfy the equality $\sqrt{x-\sqrt{y}}+\sqrt{x+\sqrt{y}}=\sqrt{x y}$

2 Each positive integer should be colored red or green in such a way that the following two conditions are met:

- Let n be any red number. The sum of any n (not necessarily different) red numbers is red.
- Let m be any green number. The sum of any m (not necessarily different) green numbers is green.
Determine all such colorings.
3 The $A B C D E$ pentagon is inscribed in a circle and $A B=B C=C D$. Segments $A C$ and $B E$ intersect at K, and Segments $A D$ and $C E$ intersect at point L. Prove that $A K=K L$.

4 Determine the largest two-digit number d with the following property: for any six-digit number $\overline{a a b b c c}$ number d is a divisor of the number $\overline{a a b b c c}$ if and only if the number d is a divisor of the corresponding three-digit number $\overline{a b c}$.
Note The numbers $a \neq 0, b$ and c need not be different.
$5 \quad$ Point M is the midpoint of the side $A B$ of an acute triangle $A B C$. Point P lies on the segment $A B$, and points S_{1} and S_{2} are the centers of the circumcircles of $A P C$ and $B P C$, respectively. Show that the midpoint of segment $S_{1} S_{2}$ lies on the perpendicular bisector of segment $C M$.

- Team

1 Decide whether there are infinitely many primes p having a multiple in the form $n^{2}+n+1$ for some natural number n

2 Find all natural numbers n such that the sum of the three largest divisors of n is 1457 .
3 In a certain group there are $n \geq 5$ people, with every two people who do not know each other exactly having one mutual friend and no one knows everyone else. Prove 5 of n people, may sit at a circle around the table so that each of them sits between
a) friends,
b) strangers.

4 Let $A B C D$ be a convex quadrilateral with $\angle D A B=\angle A B C=\angle B C D>90^{\circ}$. The circle circumscribed around the triangle $A B C$ intersects the sides $A D$ and $C D$ at points K and L, respectively, different from any vertex of the quadrilateral $A B C D$. Segments $A L$ and $C K$ intersect at point P. Prove that $\angle A D B=\angle P D C$.

5 Let a, b, c be positive real numbers for which $a b+a c+b c \geq a+b+c$. Prove that $a+b+c \geq 3$.
$6 \quad$ There is a square $A B C D$ in the plane with $|A B|=a$. Determine the smallest possible radius value of three equal circles to cover a given square.

