

Czech-Polish-Slovak Junior Match 2013

AoPS Community

2013 Czech-Polish-Slovak Junior Match

www.artofproblemsolving.com/community/c1093554 by parmenides51	
_	Individual
1	Determine all pairs (x, y) of integers for which satisfy the equality $\sqrt{x - \sqrt{y}} + \sqrt{x + \sqrt{y}} = \sqrt{xy}$
2	 Each positive integer should be colored red or green in such a way that the following two conditions are met: Let <i>n</i> be any red number. The sum of any <i>n</i> (not necessarily different) red numbers is red. Let <i>m</i> be any green number. The sum of any <i>m</i> (not necessarily different) green numbers is green. Determine all such colorings.
3	The <i>ABCDE</i> pentagon is inscribed in a circle and $AB = BC = CD$. Segments <i>AC</i> and <i>BE</i> intersect at <i>K</i> , and Segments <i>AD</i> and <i>CE</i> intersect at point <i>L</i> . Prove that $AK = KL$.
4	Determine the largest two-digit number d with the following property: for any six-digit number \overline{aabbcc} number d is a divisor of the number \overline{aabbcc} if and only if the number d is a divisor of the corresponding three-digit number \overline{abc} .
	Note The numbers $a \neq 0, b$ and c need not be different.
5	Point M is the midpoint of the side AB of an acute triangle ABC . Point P lies on the segment AB , and points S_1 and S_2 are the centers of the circumcircles of APC and BPC , respectively. Show that the midpoint of segment S_1S_2 lies on the perpendicular bisector of segment CM .
-	Team
1	Decide whether there are infinitely many primes p having a multiple in the form $n^2 + n + 1$ for some natural number n
2	Find all natural numbers n such that the sum of the three largest divisors of n is 1457 .
3	In a certain group there are $n \ge 5$ people, with every two people who do not know each other exactly having one mutual friend and no one knows everyone else. Prove 5 of n people, may sit at a circle around the table so that each of them sits between a) friends, b) strangers.

AoPS Community

2013 Czech-Polish-Slovak Junior Match

- 4 Let ABCD be a convex quadrilateral with ∠DAB = ∠ABC = ∠BCD > 90°. The circle circumscribed around the triangle ABC intersects the sides AD and CD at points K and L, respectively, different from any vertex of the quadrilateral ABCD. Segments AL and CK intersect at point P. Prove that ∠ADB = ∠PDC.
 5 Let a, b, c be positive real numbers for which ab + ac + bc ≥ a + b + c. Prove that a + b + c ≥ 3.
- **6** There is a square ABCD in the plane with |AB| = a. Determine the smallest possible radius value of three equal circles to cover a given square.

Act of Problem Solving is an ACS WASC Accredited School.