AoPS Community

Canada National Olympiad 2020

www.artofproblemsolving.com/community/c1094141
by SpecialBeing2017

1 There are $n \geq 3$ distinct positive real numbers. Show that there are at most $n-2$ different integer power of three that can be written as the sum of three distinct elements from these n numbers.
$2 A B C D$ is a fixed rhombus. Segment $P Q$ is tangent to the inscribed circle of $A B C D$, where P is on side $A B, Q$ is on side $A D$. Show that, when segment $P Q$ is moving, the area of $\triangle C P Q$ is a constant.

3 There are finite many coins in Davids purse. The values of these coins are pair wisely distinct positive integers. Is that possible to make such a purse, such that David has exactly 2020 different ways to select the coins in his purse and the sum of these selected coins is 2020 ?
$4 S=\{1,4,8,9,16, \ldots\}$ is the set of perfect integer power. ($S=\left\{n^{k} \mid n, k \in Z, k \geq 2\right\}$.) We arrange the elements in S into an increasing sequence $\left\{a_{i}\right\}$. Show that there are infinite many n, such that $9999 \mid a_{n+1}-a_{n}$

5 Simple graph G has 19998 vertices. For any subgraph \bar{G} of G with 9999 vertices, \bar{G} has at least 9999 edges. Find the minimum number of edges in G

