

AoPS Community

Canada National Olympiad 2020

www.artofproblemsolving.com/community/c1094141 by SpecialBeing2017

- 1 There are $n \ge 3$ distinct positive real numbers. Show that there are at most n 2 different integer power of three that can be written as the sum of three distinct elements from these n numbers.
- **2** *ABCD* is a fixed rhombus. Segment *PQ* is tangent to the inscribed circle of *ABCD*, where *P* is on side *AB*, *Q* is on side *AD*. Show that, when segment *PQ* is moving, the area of ΔCPQ is a constant.
- **3** There are finite many coins in Davids purse. The values of these coins are pair wisely distinct positive integers. Is that possible to make such a purse, such that David has exactly 2020 different ways to select the coins in his purse and the sum of these selected coins is 2020?
- 4 $S = \{1, 4, 8, 9, 16, ...\}$ is the set of perfect integer power. ($S = \{n^k | n, k \in Z, k \ge 2\}$.) We arrange the elements in S into an increasing sequence $\{a_i\}$. Show that there are infinite many n, such that $9999|a_{n+1} a_n$
- 5 Simple graph G has 19998 vertices. For any subgraph \overline{G} of G with 9999 vertices, \overline{G} has at least 9999 edges. Find the minimum number of edges in G

AoPS Online AoPS Academy AoPS Content

Art of Problem Solving is an ACS WASC Accredited School.