

AoPS Community

www.artofproblemsolving.com/community/c1102825 by mira74

-	Session 1
1	Show that there exists some positive integer k with
	gcd(2012, 2020) = gcd(2012 + k, 2020)
	$= \gcd(2012, 2020 + k) = \gcd(2012 + k, 2020 + k).$
2	Consider a function $f : \mathbb{Z} \to \mathbb{Z}$. We call an integer <i>a spanning</i> if for all integers $b \neq a$, there exists a positive integer <i>k</i> with $f^k(a) = b$. Find, with proof, the maximum possible number o <i>spanning</i> numbers of <i>f</i> .
	Note: \mathbb{Z} represents the set of all integers, so f is a function from the set of integers to itself $f^k(a)$ is defined as f applied k times to a .
3	Find all polynomials P with integer coefficients such that for all positive integers x, y ,
	$\frac{P(x) - P(y)}{x^2 + y^2}$
	evaluates to an integer (in particular, it can be zero).
4	Let $\triangle ABC$ be an acute, scalene triangle with orthocenter H , and let AH meet the circumcircle of $\triangle ABC$ at a point $D \neq A$. Points E and F are chosen on AC and AB such that $DE \perp AC$ and $DF \perp AB$. Show that BE , CF , and the line through H parallel to EF concur.
_	Session 2
5	Is there a function f from the positive integers to themselves such that
	$f(a)f(b) \ge f(ab)f(1)$
	with equality if and only if $(a - 1)(b - 1)(a - b) = 0$?
6	Let $ABCD$ be an isosceles trapezoid inscribed in circle ω , such that $AD BC$. Point E is chosen on the arc BC of ω not containing A . Let BC and DE intersect at F . Show that if E is chosen such that $EB = EC$, the area of AEF is maximized.

AoPS Community

7 Find all pairs of positive integers *a*, *b* with

$$a^{a} + b^{b} \mid (ab)^{|a-b|} - 1.$$

8 Find all angles $0 < \theta < 90^{\circ}$ for which there exists an angle $0 < \beta < 90^{\circ}$ such that a right triangle with angles 90° , θ , $90^{\circ} - \theta$ can be tiled by a finite number of isosceles triangles with angles β , β , $180^{\circ} - 2\beta$. (The isosceles triangles are not necessarily pairwise congruent, but they are pairwise similar.)

Act of Problem Solving is an ACS WASC Accredited School.