Art of Problem Solving

AoPS Community

National Mathematical Olympiad 2014

www.artofproblemsolving.com/community/c1109932
by parmenides51, Konigsberg, fattypiggy123

- \quad 2nd Round

1 The quadrilateral $A B C D$ is inscribed in a circle which has diameter $B D$. Points A and B are symmetric to A and B with respect to the line $B D$ and $A C$ respectively. If the lines $A C, B D$ intersect at P and $A C, B D$ intersect at Q, prove that $P Q$ is perpendicular to $A C$.

2 Find all functions from the reals to the reals satisfying

$$
f(x f(y)+x)=x y+f(x)
$$

3 Let $0<a_{1}<a_{2}<\cdots<a_{n}$ be real numbers. Prove that

$$
\left(\frac{1}{1+a_{1}}+\frac{1}{1+a_{2}}+\cdots+\frac{1}{1+a_{n}}\right)^{2} \leq \frac{1}{a_{1}}+\frac{1}{a_{2}-a_{1}}+\cdots+\frac{1}{a_{n}-a_{n-1}} .
$$

4 Fill up each square of a 50 by 50 grid with an integer. Let G be the configuration of 8 squares obtained by taking a 3 by 3 grid and removing the central square. Given that for any such G in the 50 by 50 grid, the sum of integers in its squares is positive, show there exist a 2 by 2 square such that the sum of its entries is also positive.

5 Determine the largest odd positive integer n such that every odd integer k with $1<k<n$ and $\operatorname{gcd}(k, n)=1$ is a prime.

