AoPS Community

National Matematical Olympiad 2017

www.artofproblemsolving.com/community/c1109938
by parmenides51

- \quad 2nd Round

1 The incircle of $\triangle A B C$ touches the sides $B C, C A, A B$ at D, E, F respectively. A circle through A and B encloses $\triangle A B C$ and intersects the line $D E$ at points P and Q. Prove that the midpoint of $A B$ lies on the circumircle of $\triangle P Q F$.

2 Let $a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}, p$ be real numbers with $p>-1$. Prove that

$$
\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)\left(a_{i}\left(a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2}\right)^{p / 2}-b_{i}\left(b_{1}^{2}+b_{2}^{2}+\ldots+b_{n}^{2}\right)^{p / 2}\right) \geq 0
$$

3 Find the smallest positive integer n so that $\sqrt{\frac{1^{2}+2^{2}+\ldots+n^{2}}{n}}$ is an integer.
4 Let $n>3$ be an integer. Prove that there exist positive integers x_{1}, \ldots, x_{n} in geometric progression and positive integers y_{1}, \ldots, y_{n} in arithmetic progression such that $x_{1}<y_{1}<x_{2}<y_{2}<$ $\ldots<x_{n}<y_{n}$
$5 \quad$ Let A and B be two $n \times n$ square arrays. The cells of A are labelled by the numbers from 1 to n^{2} from left to right starting from the top row, whereas the cells of B are labelled by the numbers from 1 to n^{2} along rising north-easterly diagonals starting with the upper left-hand corner. Stack the array B on top of the array A. If two overlapping cells have the same number, they are coloured red. Determine those n for which there is at least one red cell other than the cells at top left corner, bottom right corner and the centre (when n is odd). Below shows the arrays for $n=4$.
https://cdn.artofproblemsolving.com/attachments/8/e/cc8a435cb28420ccf91340023d440e39f0e8 png

