AoPS Community

IMO Shortlist 2015

www.artofproblemsolving.com/community/c111148
by gavrilos, ABCDE, va2010, codyj, CantonMathGuy, randomusername, Problem_Penetrator, samithayohan, termas

- Algebra

A1 Suppose that a sequence a_{1}, a_{2}, \ldots of positive real numbers satisfies

$$
a_{k+1} \geq \frac{k a_{k}}{a_{k}^{2}+(k-1)}
$$

for every positive integer k. Prove that $a_{1}+a_{2}+\ldots+a_{n} \geq n$ for every $n \geq 2$.
A2 Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property that

$$
f(x-f(y))=f(f(x))-f(y)-1
$$

holds for all $x, y \in \mathbb{Z}$.
A3 Let n be a fixed positive integer. Find the maximum possible value of

$$
\sum_{1 \leq r<s \leq 2 n}(s-r-n) x_{r} x_{s}
$$

where $-1 \leq x_{i} \leq 1$ for all $i=1, \cdots, 2 n$.
A4 Let \mathbb{R} be the set of real numbers. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the equation

$$
f(x+f(x+y))+f(x y)=x+f(x+y)+y f(x)
$$

for all real numbers x and y.
Proposed by Dorlir Ahmeti, Albania
A5 Let $2 \mathbb{Z}+1$ denote the set of odd integers. Find all functions $f: \mathbb{Z} \mapsto 2 \mathbb{Z}+1$ satisfying

$$
f(x+f(x)+y)+f(x-f(x)-y)=f(x+y)+f(x-y)
$$

for every $x, y \in \mathbb{Z}$.
A6 Let n be a fixed integer with $n \geq 2$. We say that two polynomials P and Q with real coefficients are block-similar if for each $i \in\{1,2, \ldots, n\}$ the sequences

$$
\begin{aligned}
& P(2015 i), P(2015 i-1), \ldots, P(2015 i-2014) \quad \text { and } \\
& Q(2015 i), Q(2015 i-1), \ldots, Q(2015 i-2014)
\end{aligned}
$$

are permutations of each other.
(a) Prove that there exist distinct block-similar polynomials of degree $n+1$.
(b) Prove that there do not exist distinct block-similar polynomials of degree n.

Proposed by David Arthur, Canada

- Combinatorics

C1 In Lineland there are $n \geq 1$ towns, arranged along a road running from left to right. Each town has a left bulldozer (put to the left of the town and facing left) and a right bulldozer (put to the right of the town and facing right). The sizes of the $2 n$ bulldozers are distinct. Every time when a left and right bulldozer confront each other, the larger bulldozer pushes the smaller one off the road. On the other hand, bulldozers are quite unprotected at their rears; so, if a bulldozer reaches the rear-end of another one, the first one pushes the second one off the road, regardless of their sizes.

Let A and B be two towns, with B to the right of A. We say that town A can sweep town B away if the right bulldozer of A can move over to B pushing off all bulldozers it meets. Similarly town B can sweep town A away if the left bulldozer of B can move over to A pushing off all bulldozers of all towns on its way.

Prove that there is exactly one town that cannot be swept away by any other one.
C2 We say that a finite set \mathcal{S} of points in the plane is balanced if, for any two different points A and B in \mathcal{S}, there is a point C in \mathcal{S} such that $A C=B C$. We say that \mathcal{S} is centre-free if for any three different points A, B and C in \mathcal{S}, there is no points P in \mathcal{S} such that $P A=P B=P C$.
(a) Show that for all integers $n \geq 3$, there exists a balanced set consisting of n points.
(b) Determine all integers $n \geq 3$ for which there exists a balanced centre-free set consisting of n points.
Proposed by Netherlands
C3 For a finite set A of positive integers, a partition of A into two disjoint nonempty subsets A_{1} and A_{2} is good if the least common multiple of the elements in A_{1} is equal to the greatest common divisor of the elements in A_{2}. Determine the minimum value of n such that there exists a set of n positive integers with exactly 2015 good partitions.

C4 Let n be a positive integer. Two players A and B play a game in which they take turns choosing positive integers $k \leq n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.

The player A takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.

Proposed by Finland

C5 The sequence a_{1}, a_{2}, \ldots of integers satisfies the conditions:
(i) $1 \leq a_{j} \leq 2015$ for all $j \geq 1$,
(ii) $k+a_{k} \neq \ell+a_{\ell}$ for all $1 \leq k<\ell$.

Prove that there exist two positive integers b and N for which

$$
\left|\sum_{j=m+1}^{n}\left(a_{j}-b\right)\right| \leq 1007^{2}
$$

for all integers m and n such that $n>m \geq N$.
Proposed by Ivan Guo and Ross Atkins, Australia
C6 Let S be a nonempty set of positive integers. We say that a positive integer n is clean if it has a unique representation as a sum of an odd number of distinct elements from S. Prove that there exist infinitely many positive integers that are not clean.

C7 In a company of people some pairs are enemies. A group of people is called unsociable if the number of members in the group is odd and at least 3, and it is possible to arrange all its members around a round table so that every two neighbors are enemies. Given that there are at most 2015 unsociable groups, prove that it is possible to partition the company into 11 parts so that no two enemies are in the same part.
Proposed by Russia

- Geometry

G1 Let $A B C$ be an acute triangle with orthocenter H. Let G be the point such that the quadrilateral $A B G H$ is a parallelogram. Let I be the point on the line $G H$ such that $A C$ bisects $H I$. Suppose
that the line $A C$ intersects the circumcircle of the triangle $G C I$ at C and J. Prove that $I J=$ AH.

G2 Triangle $A B C$ has circumcircle Ω and circumcenter O. A circle Γ with center A intersects the segment $B C$ at points D and E, such that B, D, E, and C are all different and lie on line $B C$ in this order. Let F and G be the points of intersection of Γ and Ω, such that A, F, B, C, and G lie on Ω in this order. Let K be the second point of intersection of the circumcircle of triangle $B D F$ and the segment $A B$. Let L be the second point of intersection of the circumcircle of triangle $C G E$ and the segment $C A$.
Suppose that the lines $F K$ and $G L$ are different and intersect at the point X. Prove that X lies on the line $A O$.

Proposed by Greece
G3 Let $A B C$ be a triangle with $\angle C=90^{\circ}$, and let H be the foot of the altitude from C. A point D is chosen inside the triangle $C B H$ so that $C H$ bisects $A D$. Let P be the intersection point of the lines $B D$ and $C H$. Let ω be the semicircle with diameter $B D$ that meets the segment $C B$ at an interior point. A line through P is tangent to ω at Q. Prove that the lines $C Q$ and $A D$ meet on ω.

G4 Let $A B C$ be an acute triangle and let M be the midpoint of $A C$. A circle ω passing through B and M meets the sides $A B$ and $B C$ at points P and Q respectively. Let T be the point such that $B P T Q$ is a parallelogram. Suppose that T lies on the circumcircle of $A B C$. Determine all possible values of $\frac{B T}{B M}$.

G5 Let $A B C$ be a triangle with $C A \neq C B$. Let D, F, and G be the midpoints of the sides $A B$, $A C$, and $B C$ respectively. A circle Γ passing through C and tangent to $A B$ at D meets the segments $A F$ and $B G$ at H and I, respectively. The points H^{\prime} and I^{\prime} are symmetric to H and I about F and G, respectively. The line $H^{\prime} I^{\prime}$ meets $C D$ and $F G$ at Q and M, respectively. The line $C M$ meets Γ again at P. Prove that $C Q=Q P$.
Proposed by El Salvador
G6 Let $A B C$ be an acute triangle with $A B>A C$. Let Γ be its circumcircle, H its orthocenter, and F the foot of the altitude from A. Let M be the midpoint of $B C$. Let Q be the point on Γ such that $\angle H Q A=90^{\circ}$ and let K be the point on Γ such that $\angle H K Q=90^{\circ}$. Assume that the points A, B, C, K and Q are all different and lie on Γ in this order.
Prove that the circumcircles of triangles $K Q H$ and $F K M$ are tangent to each other.
Proposed by Ukraine
G7 Let $A B C D$ be a convex quadrilateral, and let P, Q, R, and S be points on the sides $A B, B C$, $C D$, and $D A$, respectively. Let the line segment $P R$ and $Q S$ meet at O. Suppose that each of
the quadrilaterals $A P O S, B Q O P, C R O Q$, and $D S O R$ has an incircle. Prove that the lines $A C$, $P Q$, and $R S$ are either concurrent or parallel to each other.

G8 A triangulation of a convex polygon Π is a partitioning of Π into triangles by diagonals having no common points other than the vertices of the polygon. We say that a triangulation is a Thaiangulation if all triangles in it have the same area.
Prove that any two different Thaiangulations of a convex polygon Π differ by exactly two triangles. (In other words, prove that it is possible to replace one pair of triangles in the first Thaiangulation with a different pair of triangles so as to obtain the second Thaiangulation.)

Proposed by Bulgaria

- Number Theory

N1 Determine all positive integers M such that the sequence $a_{0}, a_{1}, a_{2}, \ldots$ defined by

$$
a_{0}=M+\frac{1}{2} \quad \text { and } \quad a_{k+1}=a_{k}\left\lfloor a_{k}\right\rfloor \quad \text { for } k=0,1,2, \cdots
$$

contains at least one integer term.
N2 Let a and b be positive integers such that $a!+b$! divides $a!b!$. Prove that $3 a \geq 2 b+2$.
N3 Let m and n be positive integers such that $m>n$. Define $x_{k}=\frac{m+k}{n+k}$ for $k=1,2, \ldots, n+1$. Prove that if all the numbers $x_{1}, x_{2}, \ldots, x_{n+1}$ are integers, then $x_{1} x_{2} \ldots x_{n+1}-1$ is divisible by an odd prime.

N4 Suppose that a_{0}, a_{1}, \cdots and b_{0}, b_{1}, \cdots are two sequences of positive integers such that $a_{0}, b_{0} \geq$ 2 and

$$
a_{n+1}=\operatorname{gcd}\left(a_{n}, b_{n}\right)+1, \quad b_{n+1}=\operatorname{lcm}\left(a_{n}, b_{n}\right)-1 .
$$

Show that the sequence a_{n} is eventually periodic; in other words, there exist integers $N \geq 0$ and $t>0$ such that $a_{n+t}=a_{n}$ for all $n \geq N$.

N5 Find all positive integers (a, b, c) such that

$$
a b-c, \quad b c-a, \quad c a-b
$$

are all powers of 2 .
Proposed by Serbia
N6 Let $\mathbb{Z}_{>0}$ denote the set of positive integers. Consider a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$. For any $m, n \in$ $\mathbb{Z}_{>0}$ we write $f^{n}(m)=\underbrace{f(f(\ldots f}_{n}(m) \ldots))$. Suppose that f has the following two properties:
(i) if $m, n \in \mathbb{Z}_{>0}$, then $\frac{f^{n}(m)-m}{n} \in \mathbb{Z}_{>0}$;
(ii) The set $\mathbb{Z}_{>0} \backslash\left\{f(n) \mid n \in \mathbb{Z}_{>0}\right\}$ is finite.

Prove that the sequence $f(1)-1, f(2)-2, f(3)-3, \ldots$ is periodic.
Proposed by Ang Jie Jun, Singapore
N7 Let $\mathbb{Z}_{>0}$ denote the set of positive integers. For any positive integer k, a function $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{>0}$ is called $[\mathrm{i}] k$-good $[/ \mathrm{i}]$ if $\operatorname{gcd}(f(m)+n, f(n)+m) \leq k$ for all $m \neq n$. Find all k such that there exists a k-good function.
Proposed by James Rickards, Canada
N8 For every positive integer n with prime factorization $n=\prod_{i=1}^{k} p_{i}^{\alpha_{i}}$, define

$$
\mho(n)=\sum_{i: p_{i}>10^{100}} \alpha_{i} .
$$

That is, $\mho(n)$ is the number of prime factors of n greater than 10^{100}, counted with multiplicity. Find all strictly increasing functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that

$$
\mho(f(a)-f(b)) \leq \mho(a-b) \quad \text { for all integers } a \text { and } b \text { with } a>b .
$$

Proposed by Rodrigo Sanches Angelo, Brazil

