

## **AoPS Community**

## 2001 Estonia Team Selection Test

## **Estonia Team Selection Test 2001**

www.artofproblemsolving.com/community/c1111969 by parmenides51

| - | Day 1                                                                                                                                                                                                                                                                                                                                         |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Consider on the coordinate plane all rectangles whose<br>(i) vertices have integer coordinates;<br>(ii) edges are parallel to coordinate axes;<br>(iii) area is $2^k$ , where $k = 0, 1, 2$<br>Is it possible to color all points with integer coordinates in two colors so that no such rectangle<br>has all its vertices of the same color? |
| 2 | Point <i>X</i> is taken inside a regular <i>n</i> -gon of side length <i>a</i> . Let $h_1, h_2,, h_n$ be the distances from <i>X</i> to the lines defined by the sides of the <i>n</i> -gon. Prove that $\frac{1}{h_1} + \frac{1}{h_2} + + \frac{1}{h_n} > \frac{2\pi}{a}$                                                                    |
| 3 | Let k be a fixed real number. Find all functions $f : R \to R$ such that $f(x) + (f(y))^2 = kf(x+y^2)$ for all real numbers x and y.                                                                                                                                                                                                          |
| - | Day 2                                                                                                                                                                                                                                                                                                                                         |
| 4 | Consider all products by 2, 4, 6,, 2000 of the elements of the set $A = \left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4},, \frac{1}{2000}, \frac{1}{2001}\right\}$ . Find the sum of all these products.                                                                                                                                          |
| 5 | Find the exponent of 37 in the representation of the number $11111$ with $3 \cdot 37^{2000}$ digits equals to 1, as product of prime powers                                                                                                                                                                                                   |
| 6 | Let $C_1$ and $C_2$ be the incircle and the circumcircle of the triangle $ABC$ , respectively. Prove that, for any point $A'$ on $C_2$ , there exist points $B'$ and $C'$ such that $C_1$ and $C_2$ are the incircle and the circumcircle of triangle $A'B'C'$ , respectively.                                                                |

AoPS Online 🔯 AoPS Academy 🗿 AoPS 🕬

Art of Problem Solving is an ACS WASC Accredited School.