AoPS Community

Estonia Team Selection Test 2001

www.artofproblemsolving.com/community/c1111969
by parmenides51

- Day 1

1 Consider on the coordinate plane all rectangles whose
(i) vertices have integer coordinates;
(ii) edges are parallel to coordinate axes;
(iii) area is 2^{k}, where $k=0,1,2 \ldots$.

Is it possible to color all points with integer coordinates in two colors so that no such rectangle has all its vertices of the same color?

2 Point X is taken inside a regular n-gon of side length a. Let $h_{1}, h_{2}, \ldots, h_{n}$ be the distances from X to the lines defined by the sides of the n-gon. Prove that $\frac{1}{h_{1}}+\frac{1}{h_{2}}+\ldots+\frac{1}{h_{n}}>\frac{2 \pi}{a}$
$3 \quad$ Let k be a fixed real number. Find all functions $f: R \rightarrow R$ such that $f(x)+(f(y))^{2}=k f\left(x+y^{2}\right)$ for all real numbers x and y.

- Day 2

4 Consider all products by $2,4,6, \ldots, 2000$ of the elements of the set $A=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{2000}, \frac{1}{2001}\right\}$. Find the sum of all these products.

5 Find the exponent of 37 in the representation of the number $111 \ldots . . .11$ with $3 \cdot 37^{2000}$ digits equals to 1 , as product of prime powers

6 Let C_{1} and C_{2} be the incircle and the circumcircle of the triangle $A B C$, respectively. Prove that, for any point A^{\prime} on C_{2}, there exist points B^{\prime} and C^{\prime} such that C_{1} and C_{2} are the incircle and the circumcircle of triangle $A^{\prime} B^{\prime} C^{\prime}$, respectively.

