

AoPS Community

Estonia Team Selection Test 2004

www.artofproblemsolving.com/community/c1113529 by parmenides51

-	Day 1
1	Let $k > 1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P(x^k) = (P(x))^k$ for all real numbers x .
2	Let <i>O</i> be the circumcentre of the acute triangle <i>ABC</i> and let lines <i>AO</i> and <i>BC</i> intersect at point <i>K</i> . On sides <i>AB</i> and <i>AC</i> , points <i>L</i> and <i>M</i> are chosen such that $ KL = KB $ and $ KM = KC $. Prove that segments <i>LM</i> and <i>BC</i> are parallel.
3	For which natural number n is it possible to draw n line segments between vertices of a regular $2n$ -gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?
-	Day 2
4	Denote $f(m) = \sum_{k=1}^{m} (-1)^k \cos \frac{k\pi}{2m+1}$ For which positive integers m is $f(m)$ rational?
5	Find all natural numbers n for which the number of all positive divisors of the number lcm $(1, 2,, n)$ is equal to 2^k for some non-negative integer k .
6	Call a convex polyhedron a <i>footballoid</i> if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a <i>neighbour</i> of a face is a face that has a common edge with it).

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱