Art of Problem Solving

AoPS Community

Estonia Team Selection Test 2004

www.artofproblemsolving.com/community/c1113529
by parmenides51

- Day 1

1 Let $k>1$ be a fixed natural number. Find all polynomials $P(x)$ satisfying the condition $P\left(x^{k}\right)=$ $(P(x))^{k}$ for all real numbers x.

2 Let O be the circumcentre of the acute triangle $A B C$ and let lines $A O$ and $B C$ intersect at point K. On sides $A B$ and $A C$, points L and M are chosen such that $|K L|=|K B|$ and $|K M|=|K C|$. Prove that segments $L M$ and $B C$ are parallel.

3 For which natural number n is it possible to draw n line segments between vertices of a regular $2 n$-gon so that every vertex is an endpoint for exactly one segment and these segments have pairwise different lengths?

- Day 2

4 Denote $f(m)=\sum_{k=1}^{m}(-1)^{k} \cos \frac{k \pi}{2 m+1}$
For which positive integers m is $f(m)$ rational?
5 Find all natural numbers n for which the number of all positive divisors of the number Icm $(1,2, \ldots, n)$ is equal to 2^{k} for some non-negative integer k.

6 Call a convex polyhedron a footballoid if it has the following properties.
(1) Any face is either a regular pentagon or a regular hexagon.
(2) All neighbours of a pentagonal face are hexagonal (a neighbour of a face is a face that has a common edge with it).

