AoPS Community

Estonia Team Selection Test 2008

www.artofproblemsolving.com/community/c1113728
by parmenides51, orl

- Day 1

1 There are 2008 participants in a programming competition. In every round, all programmers are divided into two equal-sized teams. Find the minimal number of rounds after which there can be a situation in which every two programmers have been in different teams at least once.

2 Let $A B C D$ be a cyclic quadrangle whose midpoints of diagonals $A C$ and $B D$ are F and G, respectively.
a) Prove the following implication: if the bisectors of angles at B and D of the quadrangle intersect at diagonal $A C$ then $\frac{1}{4} \cdot|A C| \cdot|B D|=|A G| \cdot|B F| \cdot|C G| \cdot|D F|$.
b) Does the converse implication also always hold?
$3 \quad$ Let n be a positive integer, and let x and y be a positive real number such that $x^{n}+y^{n}=1$.
Prove that

$$
\left(\sum_{k=1}^{n} \frac{1+x^{2 k}}{1+x^{4 k}}\right) \cdot\left(\sum_{k=1}^{n} \frac{1+y^{2 k}}{1+y^{4 k}}\right)<\frac{1}{(1-x) \cdot(1-y)} .
$$

Author: Juhan Aru, Estonia

- Day 2

4 Sequence $\left(G_{n}\right)$ is defined by $G_{0}=0, G_{1}=1$ and $G_{n}=G_{n-1}+G_{n-2}+1$ for every $n \geq 2$. Prove that for every positive integer m there exist two consecutive terms in the sequence that are both divisible by m.
$5 \quad$ Points A and B are fixed on a circle c_{1}. Circle c_{2}, whose centre lies on c_{1}, touches line $A B$ at B. Another line through A intersects c_{2} at points D and E, where D lies between A and E. Line $B D$ intersects c_{1} again at F. Prove that line $E B$ is tangent to c_{1} if and only if D is the midpoint of the segment $B F$.

6 A string of parentheses is any word that can be composed by the following rules.

1) 0 is a string of parentheses.
2) If s is a string of parentheses then (s) is a string of parentheses.
3) If s and t are strings of parentheses then $s t$ is a string of parentheses.

The midcode of a string of parentheses is the tuple of natural numbers obtained by finding, for
all pairs of opening and its corresponding closing parenthesis, the number of characters remaining to the left from the medium position between these parentheses, and writing all these numbers in non-decreasing order. For example, the midcode of $(())$ is $(2,2)$ and the midcode of ()() is $(1,3)$. Prove that midcodes of arbitrary two different strings of parentheses are different.

