

AoPS Community

2010 Estonia Team Selection Test

Estonia Team Selection Test 2010

www.artofproblemsolving.com/community/c1117988 by parmenides51

-	Day 1
1	For arbitrary positive integers a, b , denote $a@b = \frac{a-b}{acd(a,b)}$
	Let n be a positive integer. Prove that the following conditions are equivalent:
	(i) $gcd(n, n@m) = 1$ for every positive integer $m < n$,
	(ii) $n = p^k$ where p is a prime number and k is a non-negative integer.
2	Let n be a positive integer. Find the largest integer N for which there exists a set of n weights
	such that it is possible to determine the mass of all bodies with masses of $1, 2,, N$ using a balance scale .
	(i.e. to determine whether a body with unknown mass has a mass $1, 2,, N$, and which namely).
3	Let the angles of a triangle be $lpha,eta$, and γ , the perimeter $2p$ and the radius of the circumcircle
	<i>R</i> . Prove the inequality $\cot^2 \alpha + \cot^2 \beta + \cot^2 \gamma \ge 3\left(\frac{9R^2}{p^2} - 1\right)$. When is the equality achieved?
-	Day 2
4	In an acute triangle ABC the angle C is greater than the angle A . Let AE be a diameter of the circumcircle of the triangle. Let the intersection point of the ray AC and the tangent of the circumcircle through the vertex B be K . The perpendicular to AE through K intersects the circumcircle of the triangle BCK for the second time at point D . Prove that CE bisects the angle BCD .
5	Let $P(x, y)$ be a non-constant homogeneous polynomial with real coefficients such that $P(\sin t, \cos t)$ for every real number t . Prove that there exists a positive integer k such that $P(x, y) = (x^2 + y^2)^k$.
6	Every unit square of a $n \times n$ board is colored either red or blue so that among all 2 ×2 squares on this board all possible colorings of 2 × 2 squares with these two colors are represented (colorings obtained from each other by rotation and reflection are considered different). a) Find the least possible value of n . b) For the least possible value of n find the least possible number of red unit squares

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱