AoPS Community

National Mathematical Olympiad 1995

www.artofproblemsolving.com/community/c1118720
by parmenides51

- \quad 2nd Round

1 Suppose that the rational numbers a, b and c are the roots of the equation $x^{3}+a x^{2}+b x+c=0$. Find all such rational numbers a, b and c. Justify your answer

2 Let $A_{1} A_{2} A_{3}$ be a triangle and M an interior point. The straight lines $M A_{1}, M A_{2}, M A_{3}$ intersect the opposite sides at the points B_{1}, B_{2}, B_{3} respectively (see Fig.). Show that if the areas of triangles $A_{2} B_{1} M, A_{3} B_{2} M$ and $A_{1} B_{3} M$ are equal, then M coincides with the centroid of triangle $A_{1} A_{2} A_{3}$.
https://cdn.artofproblemsolving.com/attachments/1/7/b29bdbb1f2b103be1f3cb2650b3bfff35202 png
$3 \quad$ Let P be a point inside $\triangle A B C$. Let D, E, F be the feet of the perpendiculars from P to the lines $B C, C A$ and $A B$, respectively (see Fig.). Show that
(i) $E F=A P \sin A$,
(ii) $P A+P B+P C \geq 2(P E+P D+P F)$ https://cdn.artofproblemsolving.com/attachments/d/f/f37d8764fc7d99c2c3f4d16f66223ef39dfd png

4 Let a, b and c be positive integers such that $1<a<b<c$. Suppose that $(a b-l)(b c-1)(c a-1)$ is divisible by $a b c$. Find the values of a, b and c. Justify your answer.

5 Let a, b, c, d be four positive real numbers. Prove that
$a^{10}+b^{10}+c^{10}+d^{10} \geq(0.1 a+0.2 b+0.3 c+0.4 d)^{10}+(0.4 a+0.3 b+0.2 c+0 . l d)^{10}+(0.2 a+0.4 b+0.1 c+0.3 d)^{10}+(0.3 a-$

