

AoPS Community

1995 Singapore MO Open

National Mathematical Olympiad 1995

www.artofproblemsolving.com/community/c1118720 by parmenides51

-	2nd Round
1	Suppose that the rational numbers a, b and c are the roots of the equation $x^3 + ax^2 + bx + c = 0$. Find all such rational numbers a, b and c . Justify your answer
2	Let $A_1A_2A_3$ be a triangle and M an interior point. The straight lines MA_1, MA_2, MA_3 intersect the opposite sides at the points B_1, B_2, B_3 respectively (see Fig.). Show that if the areas of tri- angles A_2B_1M, A_3B_2M and A_1B_3M are equal, then M coincides with the centroid of triangle $A_1A_2A_3$. https://cdn.artofproblemsolving.com/attachments/1/7/b29bdbb1f2b103be1f3cb2650b3bfff35202 png
3	Let P be a point inside $\triangle ABC$. Let D, E, F be the feet of the perpendiculars from P to the lines BC, CA and AB , respectively (see Fig.). Show that (i) $EF = AP \sin A$, (ii) $PA + PB + PC \ge 2(PE + PD + PF)$ https://cdn.artofproblemsolving.com/attachments/d/f/f37d8764fc7d99c2c3f4d16f66223ef39dfd png
4	Let a, b and c be positive integers such that $1 < a < b < c$. Suppose that $(ab - l)(bc - 1)(ca - 1)$ is divisible by abc . Find the values of a, b and c . Justify your answer.
5	Let a, b, c, d be four positive real numbers. Prove that $a^{10}+b^{10}+c^{10}+d^{10} \ge (0.1a+0.2b+0.3c+0.4d)^{10}+(0.4a+0.3b+0.2c+0.1d)^{10}+(0.2a+0.4b+0.1c+0.3d)^{10}+(0.3a+0.4b+0.4c+0.3b+0.4c+0.3d)^{10}+(0.3a+0.4b+0.4c+0.3b+0.4c+0.3d+0.4c+0.3d)^{10}+(0.3a+0.4b+0.4c+0.4b+0.4c+0.4b+0.4c+0.3d+0.4c+0.4c+0.4c+0.4c+0.4c+0.4c+0.4c+0.4c$

Act of Problem Solving is an ACS WASC Accredited School.