AoPS Community

National Mathematical Olympiad 1997

www.artofproblemsolving.com/community/c1118723
by parmenides51

- \quad 2nd Round
$1 \triangle A B C$ is an equilateral triangle. L, M and N are points on $B C, C A$ and $A B$ respectively. Prove that $M A \cdot A N+N B \cdot B L+L C \cdot C M<B C^{2}$.

2 Observe that the number 4 is such that $\binom{4}{k}=\frac{4!}{k!(4-k)!}$ divisible by $k+1$ for $k=0,1,2,3$. Find all the natural numbers n between 50 and 90 such that $\binom{n}{k}$ is divisible by $k+1$ for $k=0,1,2, \ldots, n-1$. Justify your answers.

3 Find all the natural numbers N which satisfy the following properties:
(i) N has exactly 6 distinct factors $1, d_{1}, d_{2}, d_{3}, d_{4}, N$ and
(ii) $1+N=5\left(d_{1}+d_{2}+d_{3}+d_{4}\right)$.

Justify your answers.
4 Let $n \geq 2$ be a positive integer. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are 2 n numbers such that $\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n} n_{i}=1$ and $a_{i} \geq 0,0 \leq b_{i} \leq \frac{n-1}{n}, i=1,2, \ldots, n$. Show that

$$
b_{1} a_{2} a_{3} \ldots a_{n}+a_{1} b_{2} a_{3} \ldots a_{n}+\ldots+a_{1} a_{2} \ldots a_{k-1} b_{k} a_{k+1} \ldots a_{n}+\ldots+a_{1} a_{2} \ldots a_{n-1} b_{n} \leq \frac{1}{n(n-1)^{n-2}}
$$

