

AoPS Community

National Mathematical Olympiad 1997

www.artofproblemsolving.com/community/c1118723 by parmenides51

- 2nd Round
- 1 $\triangle ABC$ is an equilateral triangle. L, M and N are points on BC, CA and AB respectively. Prove that $MA \cdot AN + NB \cdot BL + LC \cdot CM < BC^2$.
- **2** Observe that the number 4 is such that $\binom{4}{k} = \frac{4!}{k!(4-k)!}$ divisible by k+1 for k = 0, 1, 2, 3. Find all the natural numbers n between 50 and 90 such that $\binom{n}{k}$ is divisible by k+1 for k = 0, 1, 2, ..., n-1. Justify your answers.
- **3** Find all the natural numbers N which satisfy the following properties: (i) N has exactly 6 distinct factors $1, d_1, d_2, d_3, d_4, N$ and (ii) $1 + N = 5(d_1 + d_2 + d_3 + d_4)$. Justify your answers.
- 4 Let $n \ge 2$ be a positive integer. Suppose that $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$ are 2n numbers such that $\sum_{i=1}^n a_i = \sum_{i=1}^n n_i = 1$ and $a_i \ge 0, 0 \le b_i \le \frac{n-1}{n}, i = 1, 2, ..., n$. Show that

 $b_1 a_2 a_3 \dots a_n + a_1 b_2 a_3 \dots a_n + \dots + a_1 a_2 \dots a_{k-1} b_k a_{k+1} \dots a_n + \dots + a_1 a_2 \dots a_{n-1} b_n \le \frac{1}{n(n-1)^{n-2}}$

AoPS Online 🔯 AoPS Academy 🐼 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.