AoPS Community

National Mathematical Olympiad 1998

www.artofproblemsolving.com/community/c1118754
by parmenides51

- \quad 2nd Round
$1 \quad$ In Fig. , $P A$ and $Q B$ are tangents to the circle at A and B respectively. The line $A B$ is extended to meet $P Q$ at S. Suppose that $P A=Q B$. Prove that $Q S=S P$. https://cdn.artofproblemsolving.com/attachments/6/f/f21c0c70b37768f3e80e9ee909ef34c57635c png

2 Let N be the set of natural numbers, and let $f: N \rightarrow N$ be a function satisfying $f(x)+f(x+2)<$ $2 f(x+1)$ for any $x \in N$. Prove that there exists a straight line in the $x y$-plane which contains infinitely many points with coordinates ($n, f(n)$).
$3 \quad$ Do there exist integers x and y such that $19^{19}=x^{3}+y^{4}$? Justify your answer.
$4 \quad$ Let n be a fixed positive integer. Find all the positive integers m such that

$$
\frac{m^{2}+4 m}{a_{1}}+\frac{m^{2}+8 m}{a_{1}+a_{2}}+\frac{m^{2}+12 m}{a_{1}+a_{2}+a_{3}}+\ldots+\frac{m^{2}+4 n m}{a_{1}+a_{2}+\ldots+a_{n}}<2500\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\ldots+\frac{1}{a_{n}}\right)
$$

for any positive numbers $a_{1}, a_{2}, \ldots, a_{n}$. Justify your answer.

