AoPS Community

National Mathematical Olympiad 1999

www.artofproblemsolving.com/community/c1118755
by parmenides51

- \quad 2nd Round

1 Let n be a positive integer. A square $A B C D$ is divided into n^{2} identical small squares by drawing $(n-1)$ equally spaced lines parallel to the side $A B$ and another $(n-1)$ equally spaced lines parallel to $B C$, thus giving rise to $(n+1)^{2}$ intersection points. The points A, C are coloured red and the points B, D are coloured blue. The rest of the intersection points are coloured either red or blue. Prove that the number of small squares having exactly 3 vertices of the same colour is even.

2 Call a natural number n a magic number if the number obtained by putting n on the right of any natural number is divisible by n. Find the number of magic numbers less than 500 . Justify your answer

3 For each positive integer n, let $f(n)$ be a positive integer. Show that if $f(n+1)>f(f(n))$ for every positive integer n , then $f(x)=x$ for all positive integers x.

4 Let $A B C D$ be a quadrilateral with each interior angle less than 180°. Show that if A, B, C, D do not lie on a circle, then $A B \cdot C D+A D \cdot B C>A C \cdot B D$

