AoPS Community

National Mathematical Olympiad 2003

www.artofproblemsolving.com/community/c1118804
by parmenides51

- \quad 2nd Round

1 A sequence $\left(a_{1}, a_{2}, \ldots, a_{675}\right)$ is given so that each term is an alphabet in the English language (no distinction is made between lower and upper case letters). It is known that in the sequence a is never followed by b and c is never followed by d. Show that there are integers m and n with $1 \leq m<n \leq 674$ such that $a_{m}=a_{n}$ and $a_{m+1}=a_{n+1}$

2 Find the maximum value of $\frac{x y z}{(1+5 x)(4 x+3 y)(5 y+6 z)(z+18)}$ as x, y and z range over the set of all positive real numbers. Justify your answer.

3 For any given prime p, determine whether the equation $x^{2}+y^{2}+p^{z}=2003$ always has integer solutions in x, y, z. Justify your answer

4 The pentagon $A B C D E$ which is inscribed in a circle with $A B<D E$ is the base of a pyramid with apex S. If the longest side from S is $S A$, prove that $B S>C S$.

