

AoPS Community

National Mathematical Olympiad 2004

www.artofproblemsolving.com/community/c1118805 by parmenides51

- 2nd Round
- 1 Let m, n be integers so that $m \ge n > 1$. Let $F_1, ..., F_k$ be a collection of *n*-element subsets of $\{1, ..., m\}$ so that $F_i \cap F_j$ contains at most 1 element, $1 \le i < j \le k$. Show that $k \le \frac{m(m-1)}{n(n-1)}$
- **2** Find the number of ordered pairs (a, b) of integers, where $1 \le a, b \le 2004$, such that $x^2 + ax + b = 167y$

has integer solutions in x and y. Justify your answer.

- Let AD be the common chord of two circles Γ₁ and Γ₂. A line through D intersects Γ₁ at B and Γ₂ at C. Let E be a point on the segment AD, different from A and D. The line CE intersect Γ₁ at P and Q. The line BE intersects Γ₂ at M and N.
 (i) Prove that P, Q, M, N lie on the circumference of a circle Γ₃.
 (ii) If the centre of Γ₃ is O, prove that OD is perpendicular to BC.
- 4 If $0 < x_1, x_2, ..., x_n \le 1$, where $n \ge 1$, show that

$$\frac{x_1}{1+(n-1)x_1} + \frac{x_2}{1+(n-1)x_2} + \ldots + \frac{x_n}{1+(n-1)x_n} \le 1$$

🟟 AoPS Online 🟟 AoPS Academy 🕸 AoPS 🗱