AoPS Community

National Mathematical Olympiad 2004

www.artofproblemsolving.com/community/c1118805
by parmenides51

- \quad 2nd Round

1 Let m, n be integers so that $m \geq n>1$. Let F_{1}, \ldots, F_{k} be a collection of n-element subsets of $\{1, \ldots, m\}$ so that $F_{i} \cap F_{j}$ contains at most 1 element, $1 \leq i<j \leq k$. Show that $k \leq \frac{m(m-1)}{n(n-1)}$

2 Find the number of ordered pairs (a, b) of integers, where $1 \leq a, b \leq 2004$, such that $x^{2}+a x+b=$ 167y
has integer solutions in x and y. Justify your answer.
$3 \quad$ Let $A D$ be the common chord of two circles Γ_{1} and Γ_{2}. A line through D intersects Γ_{1} at B and Γ_{2} at C. Let E be a point on the segment $A D$, different from A and D. The line $C E$ intersect Γ_{1} at P and Q. The line $B E$ intersects Γ_{2} at M and N.
(i) Prove that P, Q, M, N lie on the circumference of a circle Γ_{3}.
(ii) If the centre of Γ_{3} is O, prove that $O D$ is perpendicular to $B C$.

4 If $0<x_{1}, x_{2}, \ldots, x_{n} \leq 1$, where $n \geq 1$, show that

$$
\frac{x_{1}}{1+(n-1) x_{1}}+\frac{x_{2}}{1+(n-1) x_{2}}+\ldots+\frac{x_{n}}{1+(n-1) x_{n}} \leq 1
$$

