

AoPS Community

Balkan MO Shortlist 2012

www.artofproblemsolving.com/community/c1119068

by parmenides51, cefer, Sayan, AlastorMoody, Drytime, tenplusten

– Algebra

A1 Prove that

$$\sum_{cyc} (x+y)\sqrt{(z+x)(z+y)} \geq 4(xy+yz+zx),$$

for all positive real numbers x, y and z.

A2 Let
$$a, b, c \ge 0$$
 and $a + b + c = \sqrt{2}$. Show that

$$\frac{1}{\sqrt{1+a^2}} + \frac{1}{\sqrt{1+b^2}} + \frac{1}{\sqrt{1+c^2}} \ge 2 + \frac{1}{\sqrt{3}}$$

In general if $a_1, a_2, \cdots, a_n \ge 0$ and $\sum_{i=1}^n a_i = \sqrt{2}$ we have

$$\sum_{i=1}^{n} \frac{1}{\sqrt{1+a_i^2}} \ge (n-1) + \frac{1}{\sqrt{3}}$$

A3 Determine the maximum possible number of distinct real roots of a polynomial P(x) of degree 2012 with real coefficients satisfying the condition

$$P(a)^{3} + P(b)^{3} + P(c)^{3} \ge 3P(a)P(b)P(c)$$

for all real numbers $a, b, c \in \mathbb{R}$ with a + b + c = 0

- A4 Let ABCD be a square of the plane P. Define the minimum and the maximum the value of the function $f: P \to R$ is given by $f(P) = \frac{PA+PB}{PC+PD}$
- **A5** Let $f, g : \mathbb{Z} \to [0, \infty)$ be two functions such that f(n) = g(n) = 0 with the exception of finitely many integers n. Define $h : \mathbb{Z} \to [0, \infty)$ by

$$h(n) = \max\{f(n-k)g(k) : k \in \mathbb{Z}\}.$$

Let p and q be two positive reals such that 1/p + 1/q = 1. Prove that

$$\sum_{n \in \mathbb{Z}} h(n) \geq \left(\sum_{n \in \mathbb{Z}} f(n)^p\right)^{1/p} \left(\sum_{n \in \mathbb{Z}} g(n)^q\right)^{1/q}$$

AoPS Community

A6	Let k be a positive integer. Find the maximum value of
	$a^{3k-1}b + b^{3k-1}c + c^{3k-1}a + k^2a^kb^kc^k,$
	where a , b , c are non-negative reals such that $a + b + c = 3k$.
-	Combinatorics
C1	Let <i>n</i> be a positive integer. Let $P_n = \{2^n, 2^{n-1} \cdot 3, 2^{n-2} \cdot 3^2, \dots, 3^n\}$. For each subset <i>X</i> of P_n , we write S_X for the sum of all elements of <i>X</i> , with the convention that $S_{\emptyset} = 0$ where \emptyset is the empty set. Suppose that <i>y</i> is a real number with $0 \le y \le 3^{n+1} - 2^{n+1}$. Prove that there is a subset <i>Y</i> of P_n such that $0 \le y - S_Y < 2^n$

_ Geometry

- **G1** Let A, B and C be points lying on a circle Γ with centre O. Assume that $\angle ABC > 90$. Let D be the point of intersection of the line AB with the line perpendicular to AC at C. Let l be the line through D which is perpendicular to AO. Let E be the point of intersection of l with the line AC, and let F be the point of intersection of Γ with l that lies between D and E. Prove that the circumcircles of triangles *BFE* and *CFD* are tangent at *F*.
- G2 Let ABC be a triangle, and let ℓ be the line passing through the circumcenter of ABC and parallel to the bisector of the angle $\angle A$. Prove that the line ℓ passes through the orthocenter of ABC if and only if AB = AC or $\angle BAC = 120^{\circ}$
- G3 Let ABC be a triangle with circumcircle c and circumcenter O, and let D be a point on the side BC different from the vertices and the midpoint of BC. Let K be the point where the circumcircle c_1 of the triangle BOD intersects c for the second time and let Z be the point where c_1 meets the line AB. Let M be the point where the circumcircle c_2 of the triangle COD intersects c for the second time and let E be the point where c_2 meets the line AC. Finally let N be the point where the circumcircle c_3 of the triangle AEZ meets c again. Prove that the triangles ABC and NKM are congruent.

G4 Let M be the point of intersection of the diagonals of a cyclic quadrilateral ABCD. Let I_1 and I_2 are the incenters of triangles AMD and BMC, respectively, and let L be the point of intersection of the lines DI_1 and CI_2 . The foot of the perpendicular from the midpoint T of I_1I_2 to CL is N, and F is the midpoint of TN. Let G and J be the points of intersection of the line LF with I_1N and I_1I_2 , respectively. Let O_1 be the circumcenter of triangle LI_1J_2 , and let Γ_1 and Γ_2 be the circles with diameters O_1L and O_1J , respectively. Let V and S be the second points of intersection of I_1O_1 with Γ_1 and Γ_2 , respectively. If K is point where the circles Γ_1 and Γ_2 meet again, prove that K is the circumcenter of the triangle SVG.

AoPS Community

- **G5** The incircle of a triangle ABC touches its sides BC,CA,AB at the points A_1,B_1,C_1 . Let the projections of the orthocenter H_1 of the triangle $A_1B_1C_1$ to the lines AA_1 and BC be P and Q, respectively. Show that PQ bisects the line segment B_1C_1
- **G6** Let *P* and *Q* be points inside a triangle *ABC* such that $\angle PAC = \angle QAB$ and $\angle PBC = \angle QBA$. Let *D* and *E* be the feet of the perpendiculars from *P* to the lines *BC* and *AC*, and *F* be the foot of perpendicular from *Q* to the line *AB*. Let *M* be intersection of the lines *DE* and *AB*. Prove that $MP \perp CF$
- **G7** *ABCD* is a cyclic quadrilateral. The lines *AD* and *BC* meet at X, and the lines *AB* and *CD* meet at Y. The line joining the midpoints M and N of the diagonals *AC* and *BD*, respectively, meets the internal bisector of angle *AXB* at *P* and the external bisector of angle *BYC* at *Q*. Prove that *PXQY* is a rectangle

– Number Theory

- **N1** A sequence $(a_n)_{n=1}^{\infty}$ of positive integers satisfies the condition $a_{n+1} = a_n + \tau(n)$ for all positive integers n where $\tau(n)$ is the number of positive integer divisors of n. Determine whether two consecutive terms of this sequence can be perfect squares.
- N2 Let the sequences $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ satisfy $a_0 = b_0 = 1$, $a_n = 9a_{n-1} 2b_{n-1}$ and $b_n = 2a_{n-1} + 4b_{n-1}$ for all positive integers n. Let $c_n = a_n + b_n$ for all positive integers n. Prove that there do not exist positive integers k, r, m such that $c_r^2 = c_k c_m$.
- **N3** Let \mathbb{Z}^+ be the set of positive integers. Find all functions $f : \mathbb{Z}^+ \to \mathbb{Z}^+$ such that the following conditions both hold:

(i) f(n!) = f(n)! for every positive integer *n*,

(ii) m - n divides f(m) - f(n) whenever m and n are different positive integers.

Art of Problem Solving is an ACS WASC Accredited School.