Art of Problem Solving

AoPS Community

Balkan MO Shortlist 2012

www.artofproblemsolving.com/community/c1119068 by parmenides51, cefer, Sayan, AlastorMoody, Drytime, tenplusten

- Algebra

A1 Prove that

$$
\sum_{c y c}(x+y) \sqrt{(z+x)(z+y)} \geq 4(x y+y z+z x),
$$

for all positive real numbers x, y and z.
A2 Let $a, b, c \geq 0$ and $a+b+c=\sqrt{2}$. Show that

$$
\frac{1}{\sqrt{1+a^{2}}}+\frac{1}{\sqrt{1+b^{2}}}+\frac{1}{\sqrt{1+c^{2}}} \geq 2+\frac{1}{\sqrt{3}}
$$

In general if $a_{1}, a_{2}, \cdots, a_{n} \geq 0$ and $\sum_{i=1}^{n} a_{i}=\sqrt{2}$ we have

$$
\sum_{i=1}^{n} \frac{1}{\sqrt{1+a_{i}^{2}}} \geq(n-1)+\frac{1}{\sqrt{3}}
$$

A3 Determine the maximum possible number of distinct real roots of a polynomial $P(x)$ of degree 2012 with real coefficients satisfying the condition

$$
P(a)^{3}+P(b)^{3}+P(c)^{3} \geq 3 P(a) P(b) P(c)
$$

for all real numbers $a, b, c \in \mathbb{R}$ with $a+b+c=0$
A4 Let $A B C D$ be a square of the plane P. Define the minimum and the maximum the value of the function $f: P \rightarrow R$ is given by $f(P)=\frac{P A+P B}{P C+P D}$

A5 Let $f, g: \mathbb{Z} \rightarrow[0, \infty)$ be two functions such that $f(n)=g(n)=0$ with the exception of finitely many integers n. Define $h: \mathbb{Z} \rightarrow[0, \infty)$ by

$$
h(n)=\max \{f(n-k) g(k): k \in \mathbb{Z}\} .
$$

Let p and q be two positive reals such that $1 / p+1 / q=1$. Prove that

$$
\sum_{n \in \mathbb{Z}} h(n) \geq\left(\sum_{n \in \mathbb{Z}} f(n)^{p}\right)^{1 / p}\left(\sum_{n \in \mathbb{Z}} g(n)^{q}\right)^{1 / q} .
$$

AoPS Community

A6 Let k be a positive integer. Find the maximum value of

$$
a^{3 k-1} b+b^{3 k-1} c+c^{3 k-1} a+k^{2} a^{k} b^{k} c^{k}
$$

where a, b, c are non-negative reals such that $a+b+c=3 k$.

- Combinatorics

C1 Let n be a positive integer. Let $P_{n}=\left\{2^{n}, 2^{n-1} \cdot 3,2^{n-2} \cdot 3^{2}, \ldots, 3^{n}\right\}$. For each subset X of P_{n}, we write S_{X} for the sum of all elements of X, with the convention that $S_{\emptyset}=0$ where \emptyset is the empty set. Suppose that y is a real number with $0 \leq y \leq 3^{n+1}-2^{n+1}$.
Prove that there is a subset Y of P_{n} such that $0 \leq y-S_{Y}<2^{n}$

- Geometry

G1 Let A, B and C be points lying on a circle Γ with centre O. Assume that $\angle A B C>90$. Let D be the point of intersection of the line $A B$ with the line perpendicular to $A C$ at C. Let l be the line through D which is perpendicular to $A O$. Let E be the point of intersection of l with the line $A C$, and let F be the point of intersection of Γ with l that lies between D and E. Prove that the circumcircles of triangles $B F E$ and $C F D$ are tangent at F.

G2 Let $A B C$ be a triangle, and let ℓ be the line passing through the circumcenter of $A B C$ and parallel to the bisector of the angle $\angle A$. Prove that the line ℓ passes through the orthocenter of $A B C$ if and only if $A B=A C$ or $\angle B A C=120^{\circ}$

G3 Let $A B C$ be a triangle with circumcircle c and circumcenter O, and let D be a point on the side $B C$ different from the vertices and the midpoint of $B C$. Let K be the point where the circumcircle c_{1} of the triangle $B O D$ intersects c for the second time and let Z be the point where c_{1} meets the line $A B$. Let M be the point where the circumcircle c_{2} of the triangle $C O D$ intersects c for the second time and let E be the point where c_{2} meets the line $A C$. Finally let N be the point where the circumcircle c_{3} of the triangle $A E Z$ meets c again. Prove that the triangles $A B C$ and $N K M$ are congruent.

G4 Let M be the point of intersection of the diagonals of a cyclic quadrilateral $A B C D$. Let I_{1} and I_{2} are the incenters of triangles $A M D$ and $B M C$, respectively, and let L be the point of intersection of the lines $D I_{1}$ and $C I_{2}$. The foot of the perpendicular from the midpoint T of $I_{1} I_{2}$ to $C L$ is N, and F is the midpoint of $T N$. Let G and J be the points of intersection of the line $L F$ with $I_{1} N$ and $I_{1} I_{2}$, respectively. Let O_{1} be the circumcenter of triangle $L I_{1} J$, and let Γ_{1} and Γ_{2} be the circles with diameters $O_{1} L$ and $O_{1} J$, respectively. Let V and S be the second points of intersection of $I_{1} O_{1}$ with Γ_{1} and Γ_{2}, respectively. If K is point where the circles Γ_{1} and Γ_{2} meet again, prove that K is the circumcenter of the triangle $S V G$.

2012 Balkan MO Shortlist

G5 G5 The incircle of a triangle $A B C$ touches its sides $B C, C A, A B$ at the points A_{1}, B_{1}, C_{1}. Let the projections of the orthocenter H_{1} of the triangle $A_{1} B_{1} C_{1}$ to the lines $A A_{1}$ and $B C$ be P and Q,respectively. Show that $P Q$ bisects the line segment $B_{1} C_{1}$

G6 Let P and Q be points inside a triangle $A B C$ such that $\angle P A C=\angle Q A B$ and $\angle P B C=\angle Q B A$. Let D and E be the feet of the perpendiculars from P to the lines $B C$ and $A C$, and F be the foot of perpendicular from Q to the line $A B$. Let M be intersection of the lines $D E$ and $A B$. Prove that $M P \perp C F$

G7 $A B C D$ is a cyclic quadrilateral. The lines $A D$ and $B C$ meet at X , and the lines $A B$ and $C D$ meet at Y. The line joining the midpoints M and N of the diagonals $A C$ and $B D$, respectively, meets the internal bisector of angle $A X B$ at P and the external bisector of angle $B Y C$ at Q. Prove that $P X Q Y$ is a rectangle

- Number Theory

N1 A sequence $\left(a_{n}\right)_{n=1}^{\infty}$ of positive integers satisfies the condition $a_{n+1}=a_{n}+\tau(n)$ for all positive integers n where $\tau(n)$ is the number of positive integer divisors of n. Determine whether two consecutive terms of this sequence can be perfect squares.

N2 Let the sequences $\left(a_{n}\right)_{n=1}^{\infty}$ and $\left(b_{n}\right)_{n=1}^{\infty}$ satisfy $a_{0}=b_{0}=1, a_{n}=9 a_{n-1}-2 b_{n-1}$ and $b_{n}=$ $2 a_{n-1}+4 b_{n-1}$ for all positive integers n. Let $c_{n}=a_{n}+b_{n}$ for all positive integers n. Prove that there do not exist positive integers k, r, m such that $c_{r}^{2}=c_{k} c_{m}$.

N3 Let \mathbb{Z}^{+}be the set of positive integers. Find all functions $f: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$such that the following conditions both hold:
(i) $f(n!)=f(n)$! for every positive integer n,
(ii) $m-n$ divides $f(m)-f(n)$ whenever m and n are different positive integers.

