Art of Problem Solving

AoPS Community

Balkan MO Shortlist 2011

www.artofproblemsolving.com/community/c1119086
by parmenides51, frenchy, AlastorMoody, horizon, WakeUp

- Algebra

A1 Given real numbers x, y, z such that $x+y+z=0$, show that

$$
\frac{x(x+2)}{2 x^{2}+1}+\frac{y(y+2)}{2 y^{2}+1}+\frac{z(z+2)}{2 z^{2}+1} \geq 0
$$

When does equality hold?
A2 Given an integer $n \geq 3$, determine the maximum value of product of n non-negative real numbers $x_{1}, x_{2}, \ldots, x_{n}$ when subjected to the condition

$$
\sum_{k=1}^{n} \frac{x_{k}}{1+x_{k}}=1
$$

A3 Let n be an integer number greater than 2 , let $x_{1}, x_{2}, \ldots, x_{n}$ be n positive real numbers such that

$$
\sum_{i=1}^{n} \frac{1}{x_{i}+1}=1
$$

and let k be a real number greater than 1 . Show that:

$$
\sum_{i=1}^{n} \frac{1}{x_{i}^{k}+1} \geq \frac{n}{(n-1)^{k}+1}
$$

and determine the cases of equality.
A4 Let $x, y, z \in \mathbb{R}^{+}$satisfying $x y z=3(x+y+z)$. Prove, that

$$
\sum \frac{1}{x^{2}(y+1)} \geq \frac{3}{4(x+y+z)}
$$

- Geometry

G1 Let $A B C D$ be a convex quadrangle such that $A B=A C=B D$ (vertices are labelled in circular order). The lines $A C$ and $B D$ meet at point O, the circles $A B C$ and $A D O$ meet again at point P, and the lines $A P$ and $B C$ meet at the point Q. Show that the angles $C O Q$ and $D O Q$ are equal.

G2 Let $A B C$ be a triangle and let O be its circumcentre. The internal and external bisectrices of the angle $B A C$ meet the line $B C$ at points D and E, respectively. Let further M and L respectively denote the midpoints of the segments $B C$ and $D E$. The circles $A B C$ and $A L O$ meet again at point N. Show that the angles $B A N$ and $C A M$ are equal.

G3 Given a triangle $A B C$, let D be the midpoint of the side $A C$ and let M be the point that divides the segment $B D$ in the ratio $1 / 2$; that is, $M B / M D=1 / 2$. The rays $A M$ and $C M$ meet the sides $B C$ and $A B$ at points E and F, respectively. Assume the two rays perpendicular: $A M \perp C M$. Show that the quadrangle $A F E D$ is cyclic if and only if the median from A in triangle $A B C$ meets the line $E F$ at a point situated on the circle $A B C$.

G4 Given a triangle $A B C$, the line parallel to the side $B C$ and tangent to the incircle of the triangle meets the sides $A B$ and $A C$ at the points A_{1} and A_{2}, the points B_{1}, B_{2} and C_{1}, C_{2} are de ned similarly. Show that

$$
A A_{1} \cdot A A_{2}+B B_{1} \cdot B B_{2}+C C_{1} \cdot C C_{2} \geq \frac{1}{9}\left(A B^{2}+B C^{2}+C A^{2}\right)
$$

- Combinatorics

C1 Let S be a finite set of positive integers which has the following property:if x is a member of S,then so are all positive divisors of x. A non-empty subset T of S is good if whenever $x, y \in T$ and $x<y$, the ratio y / x is a power of a prime number. A non-empty subset T of S is bad if whenever $x, y \in T$ and $x<y$, the ratio y / x is not a power of a prime number. A set of an element is considered both good and bad. Let k be the largest possible size of a good subset of S. Prove that k is also the smallest number of pairwise-disjoint bad subsets whose union is S.

C2 Let $A B C D E F$ be a convex hexagon of area 1, whose opposite sides are parallel. The lines $A B$, $C D$ and $E F$ meet in pairs to determine the vertices of a triangle. Similarly, the lines $B C, D E$ and $F A$ meet in pairs to determine the vertices of another triangle. Show that the area of at least one of these two triangles is at least $3 / 2$.

C3 Is it possible to partition the set of positive integer numbers into two classes, none of which contains an infinite arithmetic sequence (with a positive ratio)? What is we impose the extra condition that in each class \mathcal{C} of the partition, the set of difference

$$
\{\min \{n \in \mathcal{C} \mid n>m\}-m \mid m \in \mathcal{C}\}
$$

be bounded?

- Number Theory

N1 Given an odd number $n>1$, let

$$
S=\{k \mid 1 \leq k<n, \operatorname{gcd}(k, n)=1\}
$$

and let

$$
T=\{k \mid k \in S, \operatorname{gcd}(k+1, n)=1\}
$$

For each $k \in S$, let r_{k} be the remainder left by $\frac{k^{|S|}-1}{n}$ upon division by n. Prove

$$
\prod_{k \in T}\left(r_{k}-r_{n-k}\right) \equiv|S|^{|T|} \quad(\bmod n)
$$

N2 Let $n \in \mathbb{N}$ such that $p=17^{2 n}+4$ is a prime. Show

$$
p \left\lvert\, 7^{\frac{p-1}{2}}+1\right.
$$

