AoPS Community

2009 Balkan MO Shortlist

www.artofproblemsolving.com/community/c1120585
by parmenides51, AlastorMoody, Ahiles, SPOSkopjeMK, shobber, Sayan

- Algebra

A1 Let $N \in \mathbb{N}$ and $x_{k} \in[-1,1], 1 \leq k \leq N$ such that $\sum_{k=1}^{N} x_{k}=s$. Find all possible values of $\sum_{k=1}^{N}\left|x_{k}\right|$

A2 Let $A B C D$ be a square and points $M \in B C, N \in C D, P \in D A$, such that $\angle B A M=x, \angle C M N$ $=2 x, \angle D N P=3 x$

- Show that, for any $x \in\left(0, \frac{\pi}{8}\right)$, such a configuration exists
- Determine the number of angles $x \in\left(0, \frac{\pi}{8}\right)$ for which $\angle A P B=4 x$

A3 Denote by $S(x)$ the sum of digits of positive integer x written in decimal notation. For k a fixed positive integer, define a sequence $\left(x_{n}\right)_{n \geq 1}$ by $x_{1}=1$ and $x_{n+1}=S\left(k x_{n}\right)$ for all positive integers n. Prove that $x_{n}<27 \sqrt{k}$ for all positive integer n.

A4 Denote by S the set of all positive integers. Find all functions $f: S \rightarrow S$ such that

$$
f\left(f^{2}(m)+2 f^{2}(n)\right)=m^{2}+2 n^{2}
$$

for all $m, n \in S$.

Bulgaria

A5 Given the monic polynomial

$$
P(x)=x^{N}+a_{N-1} x^{N-1}+\ldots+a_{1} x+a_{0} \in \mathbb{R}[x]
$$

of even degree $N=2 n$ and having all real positive roots x_{i}, for $1 \leq i \leq N$. Prove, for any $c \in$ $\left[0, \min _{1 \leq i \leq N}\left\{x_{i}\right\}\right)$, the following inequality

$$
c+\sqrt[N]{P(c)} \leq \sqrt[N]{a_{0}}
$$

A6 We denote the set of nonzero integers and the set of non-negative integers with \mathbb{Z}^{*} and \mathbb{N}_{0}, respectively. Find all functions $f: \mathbb{Z}^{*} \rightarrow \mathbb{N}_{0}$ such that: $\left.a\right) f(a+b) \geq \min (f(a), f(b))$ for all a, b in \mathbb{Z}^{*} for which $a+b$ is in \mathbb{Z}^{*}. b) $f(a b)=f(a)+f(b)$ for all a, b in \mathbb{Z}^{*}.

A7 Let $n \geq 2$ be a positive integer and

$$
P(x)=c_{0} X^{n}+c_{1} X^{n-1}+\ldots+c_{n-1} X+c_{n}
$$

be a polynomial with integer coefficients, such that $\left|c_{n}\right|$ is a prime number and

$$
\left|c_{0}\right|+\left|c_{1}\right|+\ldots+\left|c_{n-1}\right|<\left|c_{n}\right|
$$

Prove that the polynomial $P(X)$ is irreducible in the $\mathbb{Z}[x]$
A8 For every positive integer m and for all non-negative real numbers x, y, z denote

$$
K_{m}=x(x-y)^{m}(x-z)^{m}+y(y-x)^{m}(y-z)^{m}+z(z-x)^{m}(z-y)^{m}
$$

- Prove that $K_{m} \geq 0$ for every odd positive integer m
- Let $M=\prod_{c y c}(x-y)^{2}$. Prove, $K_{7}+M^{2} K_{1} \geq M K_{4}$
- Geometry

G1 In the triangle $A B C, \angle B A C$ is acute, the angle bisector of $\angle B A C$ meets $B C$ at D, K is the foot of the perpendicular from B to $A C$, and $\angle A D B=45^{\circ}$. Point P lies between K and C such that $\angle K D P=30^{\circ}$. Point Q lies on the ray $D P$ such that $D Q=D K$. The perpendicular at P to $A C$ meets $K D$ at L. Prove that $P L^{2}=D Q \cdot P Q$.

G2 If $A B C D E F$ is a convex cyclic hexagon, then its diagonals $A D, B E, C F$ are concurrent if and only if $\frac{A B}{B C} \cdot \frac{C D}{D E} \cdot \frac{E F}{F A}=1$.

Alternative version. Let $A B C D E F$ be a hexagon inscribed in a circle. Then, the lines $A D, B E$, $C F$ are concurrent if and only if $A B \cdot C D \cdot E F=B C \cdot D E \cdot F A$.

G3 Let $A B C D$ be a convex quadrilateral, and P be a point in its interior. The projections of P on the sides of the quadrilateral lie on a circle with center O. Show that O lies on the line through the midpoints of $A C$ and $B D$.

G4 Let $M N$ be a line parallel to the side $B C$ of a triangle $A B C$, with M on the side $A B$ and N on the side $A C$. The lines $B N$ and $C M$ meet at point P. The circumcircles of triangles $B M P$ and $C N P$ meet at two distinct points P and Q. Prove that $\angle B A Q=\angle C A P$.
Liubomir Chiriac, Moldova
G5 Let $A B C D$ be a convex quadrilateral and S an arbitrary point in its interior. Let also E be the symmetric point of S with respect to the midpoint K of the side $A B$ and let Z be the symmetric point of S with respect to the midpoint L of the side $C D$. Prove that $(A E C Z)=(E B Z D)=$ (ABCD).

G6 Two circles O_{1} and O_{2} intersect each other at M and N. The common tangent to two circles nearer to M touch O_{1} and O_{2} at A and B respectively. Let C and D be the reflection of A and B respectively with respect to M. The circumcircle of the triangle $D C M$ intersect circles O_{1} and O_{2} respectively at points E and F (both distinct from M). Show that the circumcircles of triangles $M E F$ and $N E F$ have same radius length.

- Combinatorics

C1 A 9×12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $C_{1}, C_{2}, \ldots, C_{96}$ in such way that the following to conditions are both fulfilled
i) the distances $C_{1} C_{2}, \ldots, C_{95} C_{96}, C_{96} C_{1}$ are all equal to $\sqrt{13}$,
ii) the closed broken line $C_{1} C_{2} \ldots C_{96} C_{1}$ has a centre of symmetry?

Bulgaria

C2 Let $A_{1}, A_{2}, \ldots, A_{m}$ be subsets of the set $\{1,2, \ldots, n\}$, such that the cardinal of each subset A_{i}, such $1 \leq i \leq m$ is not divisible by 30 , while the cardinal of each of the subsets $A_{i} \cap A_{j}$ for $1 \leq i, j \leq m, i \neq j$ is divisible by 30 . Prove

$$
2 m-\left\lfloor\frac{m}{30}\right\rfloor \leq 3 n
$$

- Number Theory

N1 Solve the given equation in integers

$$
y^{3}=8 x^{6}+2 x^{3} y-y^{2}
$$

N2 Solve the equation

$$
3^{x}-5^{y}=z^{2}
$$

in positive integers.
Greece
N3 Determine all integers $1 \leq m, 1 \leq n \leq 2009$, for which

$$
\prod_{i=1}^{n}\left(i^{3}+1\right)=m^{2}
$$

