

AoPS Community

2009 Balkan MO Shortlist

www.artofproblemsolving.com/community/c1120585

by parmenides51, AlastorMoody, Ahiles, SP0SkopjeMK, shobber, Sayan

-	Algebra
A1	Let $N \in \mathbb{N}$ and $x_k \in [-1, 1]$, $1 \le k \le N$ such that $\sum_{k=1}^N x_k = s$. Find all possible values of $\sum_{k=1}^N x_k $
A2	Let <i>ABCD</i> be a square and points $M \in BC$, $N \in CD$, $P \in DA$, such that $\angle BAM = x$, $\angle CMN = 2x$, $\angle DNP = 3x$
	- Show that, for any $x \in (0, \frac{\pi}{8})$, such a configuration exists - Determine the number of angles $x \in (0, \frac{\pi}{8})$ for which $\angle APB = 4x$
А3	Denote by $S(x)$ the sum of digits of positive integer x written in decimal notation. For k a fixed positive integer, define a sequence $(x_n)_{n\geq 1}$ by $x_1 = 1$ and $x_{n+1} = S(kx_n)$ for all positive integers n . Prove that $x_n < 27\sqrt{k}$ for all positive integer n .
A4	Denote by S the set of all positive integers. Find all functions $f: S \rightarrow S$ such that
	$f(f^{2}(m) + 2f^{2}(n)) = m^{2} + 2n^{2}$
	for all $m, n \in S$.
	Bulgaria
A5	Given the monic polynomial
	$P(x) = x^{N} + a_{N-1}x^{N-1} + \ldots + a_{1}x + a_{0} \in \mathbb{R}[x]$
	of even degree $N = 2n$ and having all real positive roots x_i , for $1 \le i \le N$. Prove, for any $c \in [0, \min_{1 \le i \le N} \{x_i\})$, the following inequality
	$c + \sqrt[N]{P(c)} \leq \sqrt[N]{a_0}$

A6 We denote the set of nonzero integers and the set of non-negative integers with \mathbb{Z}^* and \mathbb{N}_0 , respectively. Find all functions $f : \mathbb{Z}^* \to \mathbb{N}_0$ such that: a) $f(a + b) \ge min(f(a), f(b))$ for all a, b in \mathbb{Z}^* for which a + b is in \mathbb{Z}^* . b) f(ab) = f(a) + f(b) for all a, b in \mathbb{Z}^* .

AoPS Community

Let $n \ge 2$ be a positive integer and

A7

be a polynomial with integer coefficients, such that $|c_n|$ is a prime number and $|c_0| + |c_1| + \ldots + |c_{n-1}| < |c_n|$ Prove that the polynomial P(X) is irreducible in the $\mathbb{Z}[x]$ **A8** For every positive integer m and for all non-negative real numbers x, y, z denote $K_m = x(x-y)^m (x-z)^m + y(y-x)^m (y-z)^m + z(z-x)^m (z-y)^m$ - Prove that $K_m \ge 0$ for every odd positive integer m- Let $M = \prod_{cuc} (x - y)^2$. Prove, $K_7 + M^2 K_1 \ge M K_4$ Geometry _ G1 In the triangle ABC, $\angle BAC$ is acute, the angle bisector of $\angle BAC$ meets BC at D, K is the foot of the perpendicular from B to AC, and $\angle ADB = 45^{\circ}$. Point P lies between K and C such that $\angle KDP = 30^{\circ}$. Point Q lies on the ray DP such that DQ = DK. The perpendicular at P to AC meets KD at L. Prove that $PL^2 = DQ \cdot PQ$. If ABCDEF is a convex cyclic hexagon, then its diagonals AD, BE, CF are concurrent if and G2 only if $\frac{AB}{BC} \cdot \frac{CD}{DE} \cdot \frac{EF}{FA} = 1.$ Alternative version. Let ABCDEF be a hexagon inscribed in a circle. Then, the lines AD, BE, *CF* are concurrent if and only if $AB \cdot CD \cdot EF = BC \cdot DE \cdot FA$. G3 Let ABCD be a convex quadrilateral, and P be a point in its interior. The projections of P on the sides of the quadrilateral lie on a circle with center O. Show that O lies on the line through the midpoints of AC and BD. Let MN be a line parallel to the side BC of a triangle ABC, with M on the side AB and N on **G4** the side AC. The lines BN and CM meet at point P. The circumcircles of triangles BMP and *CNP* meet at two distinct points *P* and *Q*. Prove that $\angle BAQ = \angle CAP$. Liubomir Chiriac, Moldova G5 Let ABCD be a convex quadrilateral and S an arbitrary point in its interior. Let also E be the symmetric point of S with respect to the midpoint K of the side AB and let Z be the symmetric point of S with respect to the midpoint L of the side CD. Prove that (AECZ) = (EBZD) =(ABCD).

 $P(x) = c_0 X^n + c_1 X^{n-1} + \ldots + c_{n-1} X + c_n$

AoPS Community

2009 Balkan MO Shortlist

G6 Two circles O_1 and O_2 intersect each other at M and N. The common tangent to two circles nearer to M touch O_1 and O_2 at A and B respectively. Let C and D be the reflection of A and B respectively with respect to M. The circumcircle of the triangle DCM intersect circles O_1 and O_2 respectively at points E and F (both distinct from M). Show that the circumcircles of triangles MEF and NEF have same radius length.

Combinatorics

C1 A 9×12 rectangle is partitioned into unit squares. The centers of all the unit squares, except for the four corner squares and eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres C_1, C_2, \ldots, C_{96} in such way that the following to conditions are both fulfilled i) the distances $C_1C_2, \ldots, C_{95}C_{96}, C_{96}C_1$ are all equal to $\sqrt{13}$,

ii) the closed broken line $C_1 C_2 \dots C_{96} C_1$ has a centre of symmetry?

Bulgaria

C2 Let A_1, A_2, \ldots, A_m be subsets of the set $\{1, 2, \ldots, n\}$, such that the cardinal of each subset A_i , such $1 \le i \le m$ is not divisible by 30, while the cardinal of each of the subsets $A_i \cap A_j$ for $1 \le i, j \le m, i \ne j$ is divisible by 30. Prove

$$2m - \left\lfloor \frac{m}{30} \right\rfloor \le 3n$$

- Number Theory

N1 Solve the given equation in integers

$$y^3 = 8x^6 + 2x^3y - y^2$$

N2 Solve the equation

$$3^x - 5^y = z^2.$$

in positive integers.

Greece

N3 Determine all integers $1 \le m, 1 \le n \le 2009$, for which

$$\prod_{i=1}^{n} \left(i^3 + 1 \right) = m^2$$

🟟 AoPS Online 🟟 AoPS Academy 🟟 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.