

AoPS Community

2007 Balkan MO Shortlist

www.artofproblemsolving.com/community/c1120588

by parmenides51, AlastorMoody, Cezar Lupu, dilraba, stergiu, Valentin Vornicu, dgrozev, shoki

-	Algebra
A1	Find the minimum and maximum value of the function
	$f(x,y) = ax^2 + cy^2$
	Under the condition $ax^2 - bxy + cy^2 = d$, where a, b, c, d are positive real numbers such that $b^2 - 4ac < 0$
A2	Find all values of $a \in \mathbb{R}$ for which the polynomial
	$f(x) = x^{4} - 2x^{3} + (5 - 6a^{2})x^{2} + (2a^{2} - 4)x + (a^{2} - 2)^{2}$
	has exactly three real roots.
А3	For $n \in \mathbb{N}$, $n \geq 2$, $a_i, b_i \in \mathbb{R}$, $1 \leq i \leq n$, such that
	$\sum_{i=1}^{n} a_i^2 = \sum_{i=1}^{n} b_i^2 = 1, \sum_{i=1}^{n} a_i b_i = 0.$
	Prove that $\left(\sum_{i=1}^n a_i\right)^2 + \left(\sum_{i=1}^n b_i\right)^2 \le n.$
	Cezar Lupu & Tudorel Lupu
A4	Show that the sequence
	$a_n = \left \left(\sqrt[3]{n-2} + \sqrt[3]{n+3} \right)^3 \right $
	contains infinitely many terms of the form $a_n^{a_n}$
A5	find all the function $f, g : R \to R$ such that (1)for every $x, y \in R$ we have $f(xg(y+1)) + y = xf(y) + f(x+g(y))$ (2) $f(0) + g(0) = 0$
A6	Find all real functions f defined on \mathbb{R} , such that
	f(f(x) + y) = f(f(x) - y) + 4f(x)y,
	for all real numbers x, y .

for all real numbers x, y.

AoPS Community

A7 Find all positive integers n such that there exist a permutation σ on the set $\{1, 2, 3, ..., n\}$ for which

$$\sqrt{\sigma(1)} + \sqrt{\sigma(2)} + \sqrt{\dots + \sqrt{\sigma(n-1)} + \sqrt{\sigma(n)}}$$

is a rational number.

A8 Let c > 2 and a_0, a_1, \ldots be a sequence of real numbers such that

$$a_n = a_{n-1}^2 - a_{n-1} < \frac{1}{\sqrt{cn}}$$

for any $n \in \mathbb{N}$. Prove, $a_1 = 0$

Combinatorics

C1 For a given positive integer n > 2, let C_1, C_2, C_3 be the boundaries of three convex n- gons in the plane, such that

 $C_1 \cap C_2, C_2 \cap C_3, C_1 \cap C_3$ are finite. Find the maximum number of points of the sets $C_1 \cap C_2 \cap C_3$.

C2 Let \mathcal{F} be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min(f(X), f(Y))$, where S is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find

$$\max_{f\in\mathcal{F}}|\mathrm{Im}(f)|.$$

C3 Three travel companies provide transportation between *n* cities, such that each connection between a pair of cities is covered by one company only. Prove that, for $n \ge 11$, there must exist a round-trip through some four cities, using the services of a same company, while for n < 11 this is not anymore necessarily true.

Dan Schwarz

- Geometry
- **G1** Let ω be a circle with center O and let A be a point outside ω . The tangents from A touch ω at points B, and C. Let D be the point at which the line AO intersects the circle such that O is between A and D. Denote by X the orthogonal projection of B onto CD, by Y the midpoint of the segment BX and by Z the second point of intersection of the line DY with ω . Prove that ZA and ZC are perpendicular to each other.
- **G2** Let ABCD a convex quadrilateral with AB = BC = CD, with AC not equal to BD and E be the intersection point of it's diagonals. Prove that AE = DE if and only if $\angle BAD + \angle ADC = 120$.

AoPS Community

2007 Balkan MO Shortlist

G3 Let $A_1A_2A_3A_4A_5$ be a convex pentagon, such that

$$[A_1A_2A_3] = [A_2A_3A_4] = [A_3A_4A_5] = [A_4A_5A_1] = [A_5A_1A_2].$$

Prove that there exists a point M in the plane of the pentagon such that

$$[A_1MA_2] = [A_2MA_3] = [A_3MA_4] = [A_4MA_5] = [A_5MA_1].$$

Here [XYZ] stands for the area of the triangle ΔXYZ .

- **G4** Points M, N and P on the sides BC, CA and AB of $\triangle ABC$ are such that $\triangle MNP$ is acute. Denote by h and H the lengths of the shortest altitude of $\triangle ABC$ and the longest altitude of $\triangle MNP$. Prove that $h \le 2H$.
- Number Theory
- **N1** Solve the given system in prime numbers

$$x^{2} + yu = (x + u)^{4}$$
$$x^{2} + yz = u^{4}$$

- **N2** Prove that there are no distinct positive integers x and y such that $x^{2007} + y! = y^{2007} + x!$
- N3 i thought that this problem was in mathlinks but when i searched i didn't find it.so here it is: Find all positive integers m for which for all $\alpha, \beta \in \mathbb{Z} - \{0\}$

$$\frac{2^m\alpha^m-(\alpha+\beta)^m-(\alpha-\beta)^m}{3\alpha^2+\beta^2}\in\mathbb{Z}$$

- N4 Find all infinite arithmetic progressions formed with positive integers such that there exists a number $N \in \mathbb{N}$, such that for any prime p, p > N, the *p*-th term of the progression is also prime.
- **N5** Let $p \ge 5$ be a prime and let

$$(p-1)^p + 1 = \prod_{i=1}^n q_i^{\beta_i}$$

where q_i are primes. Prove,

$$\sum_{i=1}^{n} q_i \beta_i > p^2$$

🟟 AoPS Online 🔇 AoPS Academy 🔇 AoPS 🗱

Art of Problem Solving is an ACS WASC Accredited School.