Art of Problem Solving

AoPS Community

2007 Balkan MO Shortlist

www.artofproblemsolving.com/community/c1120588
by parmenides51, AlastorMoody, Cezar Lupu, dilraba, stergiu, Valentin Vornicu, dgrozev, shoki

- Algebra

A1 Find the minimum and maximum value of the function

$$
f(x, y)=a x^{2}+c y^{2}
$$

Under the condition $a x^{2}-b x y+c y^{2}=d$, where a, b, c, d are positive real numbers such that $b^{2}-4 a c<0$

A2 Find all values of $a \in \mathbb{R}$ for which the polynomial

$$
f(x)=x^{4}-2 x^{3}+\left(5-6 a^{2}\right) x^{2}+\left(2 a^{2}-4\right) x+\left(a^{2}-2\right)^{2}
$$

has exactly three real roots.
A3 For $n \in \mathbb{N}, n \geq 2, a_{i}, b_{i} \in \mathbb{R}, 1 \leq i \leq n$, such that

$$
\sum_{i=1}^{n} a_{i}^{2}=\sum_{i=1}^{n} b_{i}^{2}=1, \sum_{i=1}^{n} a_{i} b_{i}=0 .
$$

Prove that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}+\left(\sum_{i=1}^{n} b_{i}\right)^{2} \leq n
$$

Cezar Lupu \& Tudorel Lupu

A4 Show that the sequence

$$
a_{n}=\left\lfloor(\sqrt[3]{n-2}+\sqrt[3]{n+3})^{3}\right\rfloor
$$

contains infinitely many terms of the form $a_{n}^{a_{n}}$
A5 find all the function $f, g: R \rightarrow R$ such that
(1)for every $x, y \in R$ we have $f(x g(y+1))+y=x f(y)+f(x+g(y))$
(2) $f(0)+g(0)=0$

A6 Find all real functions f defined on \mathbb{R}, such that

$$
f(f(x)+y)=f(f(x)-y)+4 f(x) y,
$$

for all real numbers x, y.

A7 Find all positive integers n such that there exist a permutation σ on the set $\{1,2,3, \ldots, n\}$ for which

$$
\sqrt{\sigma(1)+\sqrt{\sigma(2)+\sqrt{\ldots+\sqrt{\sigma(n-1)+\sqrt{\sigma(n)}}}}}
$$

is a rational number.
A8 Let $c>2$ and a_{0}, a_{1}, \ldots be a sequence of real numbers such that

$$
a_{n}=a_{n-1}^{2}-a_{n-1}<\frac{1}{\sqrt{c n}}
$$

for any $n \in \mathbb{N}$. Prove, $a_{1}=0$

- Combinatorics

C1 For a given positive integer $n>2$, let C_{1}, C_{2}, C_{3} be the boundaries of three convex n - gons in the plane, such that
$C_{1} \cap C_{2}, C_{2} \cap C_{3}, C_{1} \cap C_{3}$ are finite. Find the maximum number of points of the sets $C_{1} \cap C_{2} \cap C_{3}$.

C2 Let \mathcal{F} be the set of all the functions $f: \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y)=\min (f(X), f(Y))$, where S is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find

$$
\max _{f \in \mathcal{F}}|\operatorname{Im}(f)| .
$$

C3 Three travel companies provide transportation between n cities, such that each connection between a pair of cities is covered by one company only. Prove that, for $n \geq 11$, there must exist a round-trip through some four cities, using the services of a same company, while for $n<11$ this is not anymore necessarily true.

Dan Schwarz

- Geometry

G1 Let ω be a circle with center O and let A be a point outside ω. The tangents from A touch ω at points B, and C. Let D be the point at which the line $A O$ intersects the circle such that O is between A and D. Denote by X the orthogonal projection of B onto $C D$, by Y the midpoint of the segment $B X$ and by Z the second point of intersection of the line $D Y$ with ω. Prove that $Z A$ and $Z C$ are perpendicular to each other.

G2 Let $A B C D$ a convex quadrilateral with $A B=B C=C D$, with $A C$ not equal to $B D$ and E be the intersection point of it's diagonals. Prove that $A E=D E$ if and only if $\angle B A D+\angle A D C=120$.

G3 Let $A_{1} A_{2} A_{3} A_{4} A_{5}$ be a convex pentagon, such that

$$
\left[A_{1} A_{2} A_{3}\right]=\left[A_{2} A_{3} A_{4}\right]=\left[A_{3} A_{4} A_{5}\right]=\left[A_{4} A_{5} A_{1}\right]=\left[A_{5} A_{1} A_{2}\right] .
$$

Prove that there exists a point M in the plane of the pentagon such that

$$
\left[A_{1} M A_{2}\right]=\left[A_{2} M A_{3}\right]=\left[A_{3} M A_{4}\right]=\left[A_{4} M A_{5}\right]=\left[A_{5} M A_{1}\right] .
$$

Here [$X Y Z$] stands for the area of the triangle $\triangle X Y Z$.
G4 Points M, N and P on the sides $B C, C A$ and $A B$ of $\triangle A B C$ are such that $\triangle M N P$ is acute. Denote by h and H the lengths of the shortest altitude of $\triangle A B C$ and the longest altitude of $\triangle M N P$. Prove that $h \leq 2 H$.

- Number Theory

N1 Solve the given system in prime numbers

$$
\begin{gathered}
x^{2}+y u=(x+u)^{v} \\
x^{2}+y z=u^{4}
\end{gathered}
$$

N2 Prove that there are no distinct positive integers x and y such that

$$
x^{2007}+y!=y^{2007}+x!
$$

N3 i thought that this problem was in mathlinks but when i searched ididn't find it.so here it is:
Find all positive integers m for which for all $\alpha, \beta \in \mathbb{Z}-\{0\}$

$$
\frac{2^{m} \alpha^{m}-(\alpha+\beta)^{m}-(\alpha-\beta)^{m}}{3 \alpha^{2}+\beta^{2}} \in \mathbb{Z}
$$

N4 Find all infinite arithmetic progressions formed with positive integers such that there exists a number $N \in \mathbb{N}$, such that for any prime $p, p>N$, the p-th term of the progression is also prime.

N5 Let $p \geq 5$ be a prime and let

$$
(p-1)^{p}+1=\prod_{i=1}^{n} q_{i}^{\beta_{i}}
$$

where q_{i} are primes. Prove,

$$
\sum_{i=1}^{n} q_{i} \beta_{i}>p^{2}
$$

