Art of Problem Solving

AoPS Community

Estonia Team Selection Test 2006

www.artofproblemsolving.com/community/c1120979
by parmenides51, Yimin Ge

- Day 1

1 Let k be any fixed positive integer. Let's look at integer pairs (a, b), for which the quadratic equations $x^{2}-2 a x+b=0$ and $y^{2}+2 a y+b=0$ are real solutions (not necessarily different), which can be denoted by x_{1}, x_{2} and y_{1}, y_{2}, respectively, in such an order that the equation $x_{1} y_{1}-x_{2} y_{2}=4 k$.
a) Find the largest possible value of the second component b of such a pair of numbers (a, b).
b) Find the sum of the other components of all such pairs of numbers.

2 The center of the circumcircle of the acute triangle $A B C$ is O. The line $A O$ intersects $B C$ at D. On the sides $A B$ and $A C$ of the triangle, choose points E and F, respectively, so that the points A, E, D, F lie on the same circle. Let E^{\prime} and F^{\prime} projections of points E and F on side $B C$ respectively. Prove that length of the segment $E^{\prime} F^{\prime}$ does not depend on the position of points E and F.

3 A grid measuring 10×11 is given. How many "crosses" covering five unit squares can be placed on the grid?
(pictured right) so that no two of them cover the same square?
https://cdn.artofproblemsolving.com/attachments/a/7/8a5944233785d960f6670e34ca7c90080f0b png

- Day 2

4 The side $A C$ of an acute triangle $A B C$ is the diameter of the circle c_{1} and side $B C$ is the diameter of the circle c_{2}. Let E be the foot of the altitude drawn from the vertex B of the triangle and F the foot of the altitude drawn from the vertex A. In addition, let L and N be the points of intersection of the line $B E$ with the circle c_{1} (the point L lies on the segment $B E$) and the points of intersection of K and M of line $A F$ with circle c_{2} (point K is in section $A F$). Prove that $K L M N$ is a cyclic quadrilateral.

5 Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers. Prove that for any positive integer n the inequality holds $\sum_{i=1}^{n} b_{i}^{2} \leq 4 \sum_{i=1}^{n} a_{i}^{2}$ where b_{i} is the arithmetic mean of the numbers $a_{1}, a_{2}, \ldots, a_{n}$

6 Denote by $d(n)$ the number of divisors of the positive integer n. A positive integer n is called highly divisible if $d(n)>d(m)$ for all positive integers $m<n$.
Two highly divisible integers m and n with $m<n$ are called consecutive if there exists no
highly divisible integer s satisfying $m<s<n$.
(a) Show that there are only finitely many pairs of consecutive highly divisible integers of the form (a, b) with $a \mid b$.
(b) Show that for every prime number p there exist infinitely many positive highly divisible integers r such that $p r$ is also highly divisible.

