Art of Problem Solving

AoPS Community

Problems from the 2018-2019 Winter SDPC. Middle School division does 1,2,3,4,5, High School division does 3,4,5,6,7

www.artofproblemsolving.com/community/c1123163
by mira74

1 Let r_{1}, r_{2}, r_{3} be the distinct real roots of $x^{3}-2019 x^{2}-2020 x+2021=0$. Prove that $r_{1}^{3}+r_{2}^{3}+r_{3}^{3}$ is an integer multiple of 3 .

2 Call a number precious if it is the sum of two distinct powers of two. Find all precious numbers n such that n^{2} is also precious.

3 A Pokemon Go player starts at $(0,0)$ and carries a pedometer that records the number of steps taken. He then takes steps with length 1 unit in the north, south, east, or west direction, such that each move after the first is perpendicular to the move before it. Somehow, the player eventually returns to (0,0), but he had visited no point (except $(0,0)$) twice. Let n be the number on the pedometer when the player returns to $(0,0)$. Of the numbers from 1 to 2019 inclusive, how many can be the value of n ?

4 Tom is chasing Jerry on the coordinate plane. Tom starts at (x, y) and Jerry starts at $(0,0)$. Jerry moves to the right at 1 unit per second. At each positive integer time t, if Tom is within 1 unit of Jerry, he hops to Jerrys location and catches him. Otherwise, Tom hops to the midpoint of his and Jerrys location.
[i]Example. If Tom starts at $(3,2)$, then at time $t=1$ Tom will be at $(2,1)$ and Jerry will be at $(1,0)$. At $t=2$ Tom will catch Jerry.[/i]

Assume that Tom catches Jerry at some integer time n.
(a) Show that $x \geq 0$.
(b) Find the maximum possible value of $\frac{y}{x+1}$.
$5 \quad$ Prove that there exists a positive integer N such that for every polynomial $P(x)$ of degree 2019, there exist N linear polynomials $p_{1}, p_{2}, \ldots p_{N}$ such that $P(x)=p_{1}(x)^{2019}+p_{2}(x)^{2019}+$ $\ldots+p_{N}(x)^{2019}$. (Assume all polynomials in this problem have real coefficients, and leading coefficients cannot be zero.)

6 Let S be the set of positive perfect squares that are of the form $\overline{A A}$, i.e. the concatenation of two equal integers A. (Integers are not allowed to start with zero.)
(a) Prove that S is infinite.
(b) Does there exist a function $f: S \times S \rightarrow S$ such that if $a, b, c \in S$ and $a, b \mid c$, then $f(a, b) \mid c$? (If such a function f exists, we call f an LCM function)

7 In triangle $A B C$, let D be on side $B C$. The line through D parallel to $A B, A C$ meet $A C, A B$ at E, F, respectively.
(a) Show that if D varies on line $B C$, the circumcircle of $A E F$ passes through a fixed point T.
(b) Show that if D lies on line $A T$, then the circumcircle of $A E F$ is tangent to the circumcircle of $B T C$.

